Skip to main content

Advertisement

Log in

Propagation of Underwater Noise from an Offshore Seismic Survey in Australia to Antarctica: Measurements and Modelling

  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

An offshore seismic survey was conducted over the western edge of the continental shelf in Bass Strait in 2006. Underwater noise from this survey was recorded on an autonomous sound recorder deployed in the Southern Ocean on the Antarctic continental slope. Sound emission and propagation models were verified by experimental measurements using parameters and position of the airgun array and characteristics of the underwater sound channel. A parabolic equation approximation method was used to calculate the sound field over the continental slope of Australia, and then, a normal mode model was employed to account for the transmission loss due to sound scattering by surface waves south of the polar front. The numerical predictions are consistent with the measurement results within a few dBs for the sound exposure and energy spectral density levels. It is also demonstrated by measurements and modelling that the best coupling of a near-surface sound source with the deep underwater sound channel takes place when the source is located over the continental slope at a sea depth of about half of the channel’s axis depth. The model can be used to predict masking effects of man-made underwater noise on the communication environment of marine mammals in Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gavrilov, A.N., McCauley, R.M., Erbe, C.: Assessment of Potential Disturbance by Masking During Use of Airguns in Antarctica: Description of Raw Data (Recordings of Seismic Airguns and Ambient Noise) held at CMST. CMST Report 2016-9 prepared for University of Hannover, Curtin University (2016)

  2. Duncan, A.: Research into the Acoustic Characteristics of an Air Gun Sound Source. CMST Report C98-18 prepared for the Defence Science and Technology Organisation, Curtin University (1998)

  3. Wilkes, D.R., Gourlay, T.P., Gavrilov, A.N.: Numerical modelling of radiated sound for impact pile driving in offshore environments. IEEE J. Ocean. Eng. 41, 1072–1078 (2016)

    Article  Google Scholar 

  4. Westwood, E., Tindle, C.T., Chapman, N.R.: A normal mode model for acoustic–elastic ocean environments. J. Acoust. Soc. Am. 100, 3631–3645 (1996)

    Article  Google Scholar 

  5. Li, B., Gavrilov, A.N.: Hydroacoustic observation of antarctic ice disintegration events in the Indian Ocean. In: Proceedings of First Australasian Acoustical Societies’ Conference, Acoustics 2006: Noise of Progress, pp. 479–484 (2006)

  6. Kuperman, W.A., Ingenito, F.: Attenuation of coherent component of sound propagating in shallow water with rough boundaries. J. Acoust. Soc. Am. 61, 1178–1187 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This modelling study was funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety under a contract with the Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Hannover. The authors also acknowledge the effort and experience of the Australian Antarctic Division team led by Dr. Jason Gedamke who deployed and retrieved the underwater sound recorders in the Southern Ocean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gavrilov.

Additional information

This paper is based on the presentation at the 2017 Australian Acoustical Society Annual Conference that was awarded the President Prise for best paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, A. Propagation of Underwater Noise from an Offshore Seismic Survey in Australia to Antarctica: Measurements and Modelling. Acoust Aust 46, 143–149 (2018). https://doi.org/10.1007/s40857-018-0131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-018-0131-1

Keywords

Navigation