Acoustics Australia

, Volume 45, Issue 2, pp 363–380 | Cite as

An Unsupervised Acoustic Description of Fish Schools and the Seabed in Three Fishing Regions Within the Northern Demersal Scalefish Fishery (NDSF, Western Australia)

  • Sven Gastauer
  • Ben Scoulding
  • Miles Parsons
Original Paper


Fisheries acoustics is now a standard tool for monitoring marine organisms. Another use of active-acoustics techniques is the potential to qualitatively describe fish school and seafloor characteristics or the distribution of fish density hotspots. Here, we use a geostatistical approach to describe the distribution of acoustic density hotspots within three fishing regions of the Northern Demersal Scalefish Fishery in Western Australia. This revealed a patchy distribution of hotspots within the three regions, covering almost half of the total areas. Energetic, geometric and bathymetric descriptors of acoustically identified fish schools were clustered using robust sparse k-means clustering with a Clest algorithm to determine the ideal number of clusters. Identified clusters were mainly defined by the energetic component of the school. Seabed descriptors considered were depth, roughness, first bottom length, maximum \(S_{v}\), kurtosis, skewness and bottom rise time. The ideal number of bottom clusters (maximisation rule with D-Index, Hubert Score and Weighted Sum of Squares), following the majority rule, was three. Cluster 1 (mainly driven by depth) was the sole type present in Region 1, Cluster 2 (mainly driven by roughness and maximum \(S_{v})\) dominated Region 3, while Region 2 was split up almost equally between Cluster 2 and 3. Detection of indicator species for the three seabed clusters revealed that the selected clusters could be related to biological information. Goldband snapper and miscellaneous fish were indicators for Cluster 1; Cods, Lethrinids, Red Emperor and other Lutjanids were linked with Cluster 2, while Rankin Cod and Triggerfish were indicators for Cluster 3.


Fisheries acoustics Acoustic habitat descriptors Unsupervised target classification Geostatistical hotspots Indicator species 



Data used within this study was collected through a project funded via the Australian Fisheries Research and Development Corporation (FRDC), with support from the Western Australian Department of Fisheries. A special thank you goes out to Kimberley Wildcatch and the crew of Carolina M., Adam and Alison Masters for their support and help during the data collection process. All data were collected according to the Australian Code of Practice for the care and use of animals for scientific purposes.


  1. 1.
    Dalen, J., Karp, W.A.: Collection of Acoustic Data from Fishing Vessels. ICES Cooperative Research Report No. 287, 83 pp (2007)Google Scholar
  2. 2.
    Melvin, G.D., Kloser, R., Honkalehto, T.: The adaptation of acoustic data from commercial fishing vessels in resource assessment and ecosystem monitoring. Fish. Res 178, 13–25 (2016)CrossRefGoogle Scholar
  3. 3.
    Ressler, P.H., Fleischer, G.W., Wespestad, V.G., Harms, J.: Developing a commercial-vessel-based stock assessment survey methodology for monitoring the US west coast widow rockfish (Sebastes entomelas) stock. Fish. Res 99, 63–73 (2009)CrossRefGoogle Scholar
  4. 4.
    Fässler, S.M., Brunel, T., Gastauer, S., Burggraaf, D.: Acoustic data collected on pelagic fishing vessels throughout an annual cycle: operational framework, interpretation of observations, and future perspectives. Fish. Res. 178, 39–46 (2016)CrossRefGoogle Scholar
  5. 5.
    ICES: Report of the Workshop on Scrutinisation Procedures for Pelagic Ecosystem Surveys (WKSCRUT). ICES CM 2015/SSGIEOM:18. Hamburg (2015)Google Scholar
  6. 6.
    Kloser, R.J., Ryan, T.E., Young, J.W., Lewis, M.E.: Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J. Mar. Sci. 66(6), 998–1006 (2009)CrossRefGoogle Scholar
  7. 7.
    Kloser, R.J., Ryan, T., Sakov, P., Williams, A., Koslow, J.A.: Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002). doi: 10.1139/f02-076 CrossRefGoogle Scholar
  8. 8.
    Simmonds, J., MacLennan, D.N.: Fisheries Acoustics: Theory and Practice. Wiley, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Barbeaux, S.J.: Scientific Acoustic Data from Commercial Fishing Vessels: Eastern Bering Sea Walleye Pollock (Theragra chalcogramma), (2012)
  10. 10.
    Barbeaux, S.J., Horne, J.K., Dorn, M.W.: Characterizing walleye pollock (Theragra chalcogramma) winter distribution from opportunistic acoustic data. ICES J. Mar. Sci. 70(6), 1162–1173 (2013)CrossRefGoogle Scholar
  11. 11.
    Gastauer, S., Scoulding, B., Parsons, M.: Towards acoustic monitoring of a mixed demersal fishery based on commercial data: the case of the Northern Demersal Scalefish Fishery (Western Australia). Fish. Res. 195, 91–104 (2017)CrossRefGoogle Scholar
  12. 12.
    Petitgas, P., Woillez, M., Doray, M., Rivoirard, J.: A geostatistical definition of hotspots for fish spatial distributions. Math. Geosci. 48, 65–77 (2016)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Woillez, M., Rivoirard, J., Petitgas, P.: Notes on survey-based spatial indicators for monitoring fish populations. Aquat. Living Resour. 22, 155–164 (2009)CrossRefGoogle Scholar
  14. 14.
    Woillez, M., Poulard, J.-C., Rivoirard, J., Petitgas, P., Bez, N.: Indices for capturing spatial patterns and their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. ICES J. Mar. Sci. J. Cons. 64, 537–550 (2007). doi: 10.1093/icesjms/fsm025 CrossRefGoogle Scholar
  15. 15.
    Gastauer, S., Fässler, S.M.M., O’Donnell, C., Høines, Å., Jakobsen, J.A., Krysov, A.I., Smith, L., Tangen, Ø., Anthonypillai, V., Mortensen, E., Armstrong, E., Schaber, M., Scoulding, B.: The distribution of blue whiting west of the British Isles and Ireland. Fish. Res. 183, 32–43 (2016). doi: 10.1016/j.fishres.2016.05.012 CrossRefGoogle Scholar
  16. 16.
    Campanella, F., Taylor, J.C.: Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016). doi: 10.1016/j.fishres.2016.03.027 CrossRefGoogle Scholar
  17. 17.
    De Robertis, A., McKelvey, D.R., Ressler, P.H.: Development and application of an empirical multifrequency method for backscatter classification. Can. J. Fish. Aquat. Sci. 67, 1459–1474 (2010)CrossRefGoogle Scholar
  18. 18.
    Horne, J.K.: Acoustic approaches to remote species identification: a review. Fish. Oceanogr. 9, 356–371 (2000)CrossRefGoogle Scholar
  19. 19.
    Koslow, J.A.: The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66(6), 966–973 (2009)CrossRefGoogle Scholar
  20. 20.
    Korneliussen, R.J., Diner, N., Ona, E., Berger, L., Fernandes, P.G.: Proposals for the collection of multifrequency acoustic data. ICES J. Mar. Sci. J. Cons. 65, 982–994 (2008). doi: 10.1093/icesjms/fsn052 CrossRefGoogle Scholar
  21. 21.
    Woillez, M., Ressler, P.H., Wilson, C.D., Horne, J.K.: Multifrequency species classification of acoustic-trawl survey data using semi-supervised learning with class discovery. J. Acoust. Soc. Am. 131, EL184–EL190 (2012)CrossRefGoogle Scholar
  22. 22.
    Cabreira, A.G., Tripode, M., Madirolas, A.: Artificial neural networks for fish-species identification. ICES J. Mar. Sci. J. Cons. 66, 1119–1129 (2009). doi: 10.1093/icesjms/fsp009 CrossRefGoogle Scholar
  23. 23.
    Haralabous, J., Georgakarakos, S.: Artificial neural networks as a tool for species identification of fish schools. ICES J. Mar. Sci. J. Cons. 53, 173–180 (1996). doi: 10.1006/jmsc.1996.0019 CrossRefGoogle Scholar
  24. 24.
    Legendre, P., Legendre, L.F.J.: Binumerical Ecology. Elsevier, Amsterdam (2012)zbMATHGoogle Scholar
  25. 25.
    Fernandes, P.G.: Classification trees for species identification of fish-school echotraces. ICES J. Mar. Sci. J. Cons. 66, 1073–1080 (2009). doi: 10.1093/icesjms/fsp060 CrossRefGoogle Scholar
  26. 26.
    Peña, M., Carbonell, A., Tor, A., Alvarez-Berastegui, D., Balbín, R., dos Santos, A., Alemany, F.: Nonlinear ecological processes driving the distribution of marine decapod larvae. Deep Sea Res. Part Oceanogr. Res. Pap. 97, 92–106 (2015). doi: 10.1016/j.dsr.2014.11.017 CrossRefGoogle Scholar
  27. 27.
    Peña, M., Calise, L.: Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species. Deep Sea Res. Part Oceanogr. Res. Pap. 110, 50–64 (2016). doi: 10.1016/j.dsr.2016.01.006 CrossRefGoogle Scholar
  28. 28.
    Korneliussen, R.J., Heggelund, Y., Eliassen, I.K., Johansen, G.O.: Acoustic species identification of schooling fish. ICES J. Mar. Sci. J. Cons. 66, 1111–1118 (2009)CrossRefGoogle Scholar
  29. 29.
    Fernandes, P.G., Korneliussen, R.J., Lebourges-Dhaussy, A., Masse, J., Iglesias, M., Diner, N., Ona, E., Knutsen, T., Gajate, J., Ponce, R.: The SIMFAMI Project: Species Identification Methods from Acoustic Multifrequency Information. Final Report to the EC No. Q5RS-2001-02054 (2006)Google Scholar
  30. 30.
    Korneliussen, R.J., Heggelund, Y., Macaulay, G.J., Patel, D., Johnsen, E., Eliassen, I.K.: Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016). doi: 10.1016/j.mio.2016.09.002 CrossRefGoogle Scholar
  31. 31.
    Fernandes, P.G., Copland, P., Garcia, R., Nicosevici, T., Scoulding, B.: Additional evidence for fisheries acoustics: small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. (2016). doi: 10.1093/icesjms/fsw091 Google Scholar
  32. 32.
    Trenkel, V., Ressler, P.H., Jech, M., Giannoulaki, M., Taylor, C.: Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators. Mar. Ecol. Prog. Ser. 442, 285–301 (2011)CrossRefGoogle Scholar
  33. 33.
    Handegard, N.O., du Buisson, L., Brehmer, P., Chalmers, S.J., Robertis, A., Huse, G., Kloser, R., Macaulay, G., Maury, O., Ressler, P.H., et al.: Towards an acoustic-based coupled observation and modelling system for monitoring and predicting ecosystem dynamics of the open ocean. Fish Fish. 14, 605–615 (2013)CrossRefGoogle Scholar
  34. 34.
    Siwabessy, P.J., Tseng, Y., Gavrilov, A.N.: Seabed habitat mapping in coastal waters using a normal incident acoustic technique. Parameters 38, 198–864 (2004)Google Scholar
  35. 35.
    Anderson, J.T., Holliday, V., Kloser, R., Reid, D., Simard, Y.: Acoustic Seabed Classification of Marine Physical and Biological Landscapes. ICES Cooperative Research Report, 286, 198 pp (2007)Google Scholar
  36. 36.
    Hamilton, L.J.: Acoustic Seabed Classification Systems. 150 pp, Department of Defence, Defence Science and Technology Organisation (2001)Google Scholar
  37. 37.
    Cutter, G.R., Demer, D.A.: Seabed classification using surface backscattering strength versus acoustic frequency and incidence angle measured with vertical, split-beam echosounders. ICES J. Mar. Sci. J. Cons. (2013). doi: 10.1093/icesjms/fst177 Google Scholar
  38. 38.
    Maravelias, C.D.: Habitat selection and clustering of a pelagic fish: effects of topography and bathymetry on species dynamics. Can. J. Fish. Aquat. Sci. 56, 437–450 (1999)CrossRefGoogle Scholar
  39. 39.
    Greenstreet, S.P., Tuck, I.D., Grewar, G.N., Armstrong, E., Reid, D.G., Wright, P.J.: An assessment of the acoustic survey technique, RoxAnn, as a means of mapping seabed habitat. ICES J. Mar. Sci. J. Cons. 54, 939–959 (1997)CrossRefGoogle Scholar
  40. 40.
    Lazzari, M.A., Tupper, B.: Importance of shallow water habitats for demersal fishes and decapod crustaceans in Penobscot Bay, Maine. Environ. Biol. Fish. 63, 57–66 (2002)CrossRefGoogle Scholar
  41. 41.
    Collins, W.T., McConnaughey, R.A.: Acoustic classification of the sea floor to address essential fish habitat and marine protected area requirements. In: Proceedings of the Canadian Hydrographic Conference, pp. 369–377. Citeseer (1998)Google Scholar
  42. 42.
    Bax, N.J., Williams, A.: Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Mar. Freshw. Res 52, 491–512 (2001)CrossRefGoogle Scholar
  43. 43.
    Link, J.S.: Translating ecosystem indicators into decision criteria. ICES J. Mar. Sci. 62, 569–576 (2005). doi: 10.1016/j.icesjms.2004.12.015 CrossRefGoogle Scholar
  44. 44.
    Hall, S.J., Mainprize, B.: Towards ecosystem-based fisheries management. Fish Fish. 5, 1–20 (2004). doi: 10.1111/j.1467-2960.2004.00133.x CrossRefGoogle Scholar
  45. 45.
    Gastauer, S., Scoulding, B., Parsons, M.: Estimates of variability of goldband snapper target strength and biomass in three fishing regions within the Northern Demersal Scalefish Fishery (Western Australia). Fish. Res. 193, 250–262 (2017). doi: 10.1016/j.fishres.2017.05.001 CrossRefGoogle Scholar
  46. 46.
    Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fässler, S., Gauthier, S., Hufnagle, L.T.: Calibration of Acoustic Instruments. ICES Cooperative Research Report, 133pp (2015)Google Scholar
  47. 47.
    Demer, D.A., Soule, M.A., Hewitt, R.P.: A multiple-frequency method for potentially improving the accuracy and precision of in situ target strength measurements. J. Acoust. Soc. Am. 105, 2359–2376 (1999)CrossRefGoogle Scholar
  48. 48.
    Conti, S.G., Demer, D.A., Soule, M.A., Conti, J.H.: An improved multiple-frequency method for measuring in situ target strengths. ICES J. Mar. Sci. J. Cons. 62, 1636–1646 (2005)CrossRefGoogle Scholar
  49. 49.
    Mitson, R.: Causes and effects of underwater noise on fish abundance estimation. Aquat. Living Resour. 16, 255–263 (2003). doi: 10.1016/S0990-7440(03)00021-4 CrossRefGoogle Scholar
  50. 50.
    Ryan, T.E., Downie, R.A., Kloser, R.J., Keith, G.: Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. J. Cons. 72, 2482–2493 (2015). doi: 10.1093/icesjms/fsv121 CrossRefGoogle Scholar
  51. 51.
    Ballón, M., Bertrand, A., Lebourges-Dhaussy, A., Gutiérrez, M., Ayón, P., Grados, D., Gerlotto, F.: Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr 91, 360–381 (2011). doi: 10.1016/j.pocean.2011.03.001 CrossRefGoogle Scholar
  52. 52.
    Lezama-Ochoa, A., Ballón, M., Woillez, M., Grados, D., Irigoien, X., Bertrand, A.: Spatial patterns and scale-dependent relationships between macrozooplankton and fish in the Bay of Biscay: an acoustic study. Mar. Ecol. Prog. Ser. 439, 151–168 (2011). doi: 10.3354/meps09318 CrossRefGoogle Scholar
  53. 53.
    Ona, E., Mitson, R.B.: Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci 53, 677–690 (1996). doi: 10.1006/jmsc.1996.0087 CrossRefGoogle Scholar
  54. 54.
    Nelson, T.A., Boots, B.: Detecting spatial hot spots in landscape ecology. Ecography 31, 556–566 (2008). doi: 10.1111/j.0906-7590.2008.05548.x CrossRefGoogle Scholar
  55. 55.
    Bartolino, V., Maiorano, L., Colloca, F.: A frequency distribution approach to hotspot identification. Popul. Ecol. 53, 351–359 (2011). doi: 10.1007/s10144-010-0229-2 CrossRefGoogle Scholar
  56. 56.
    Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, N., Wareham, V., Beazley, L.: Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 9, e109365 (2014). doi: 10.1371/journal.pone.0109365 CrossRefGoogle Scholar
  57. 57.
    Matheron, G.: La déstructuration des hautes teneurs et le krigeage des indicatrices, Centre de Geostatistique et de Morphologie Mathematique, Note N-761, 33pp (1982)Google Scholar
  58. 58.
    Rivoirard, J., Demange, C., Freulon, X., Lécureuil, A., Bellot, N.: A top-cut model for deposits with heavy-tailed grade distribution. Math. Geosci. 45, 967–982 (2013)CrossRefzbMATHGoogle Scholar
  59. 59.
    Kondo, Y., Salibian-Barrera, M., Zamar, R.: A Robust and Sparse K-Means Clustering Algorithm. ArXiv Prepr. arXiv:1201.6082. (2012)
  60. 60.
    Gordaliza, A.: Best approximations to random variables based on trimming procedures. J. Approx. Theory 64, 162–180 (1991). doi: 10.1016/0021-9045(91)90072-I CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726 (2010). doi: 10.1198/jasa.2010.tm09415 CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B. 58, 267–288 (1996)zbMATHMathSciNetGoogle Scholar
  63. 63.
    Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. (2002). doi: 10.1186/gb-2002-3-7-research0036 Google Scholar
  64. 64.
    Chipman, H., Tibshirani, R.: Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 286–301 (2006). doi: 10.1093/biostatistics/kxj007 CrossRefzbMATHGoogle Scholar
  65. 65.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). doi: 10.1016/0377-0427(87)90125-7 CrossRefzbMATHGoogle Scholar
  66. 66.
    Zuur, A.F., Ieno, E.N., Smith, G.M.: Principal component analysis and redundancy analysis. In: Analysing Ecological Data, pp. 193–224. Springer, New York (2007)Google Scholar
  67. 67.
    Huh, M.-H., Park, D.Y.: Enhancing parallel coordinate plots. J. Korean Stat. Soc. 37, 129–133 (2008). doi: 10.1016/j.jkss.2007.10.003 CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Echoview Software Pty Ltd: Echoview Software 6.1.44., Hobart (2015)Google Scholar
  69. 69.
    Siwabessy, P.J., Tseng, Y., Gavrilov, A.N., Roughness, E.B., Hardness, E.B.: Seabed habitat mapping in coastal waters using a normal incident acoustic technique. Parameters 38, 198–864 (2004)Google Scholar
  70. 70.
    Chivers, R.C., Burns, D.: Acoustic surveying of the sea bed. Acoust. Bull. 17, 5–9 (1992)Google Scholar
  71. 71.
    Chivers, R.C., Emerson, N., Burns, D.R.: New acoustic processing for underway surveying. Hydrogr. J 56, 9–17 (1990)Google Scholar
  72. 72.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985). doi: 10.1007/BF01908075 CrossRefzbMATHGoogle Scholar
  73. 73.
    Lebart, L., Morineau, A., Piron, M.: Statistique Exploratoire Multidimensionnelle. Dunod, Paris (2000)Google Scholar
  74. 74.
    Hothorn, T., Everitt, B.S.: A Handbook of Statistical Analyses Using R. CRC Press, Boca Raton (2014)zbMATHGoogle Scholar
  75. 75.
    De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L.: Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982 (2012). doi: 10.1111/j.2041-210X.2012.00246.x CrossRefGoogle Scholar
  76. 76.
    Dufrêne, M., Legendre, P.: Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997)Google Scholar
  77. 77.
    De Cáceres, M., Legendre, P., Moretti, M.: Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010). doi: 10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  78. 78.
    Cáceres, M.D., Legendre, P.: Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009). doi: 10.1890/08-1823.1 CrossRefGoogle Scholar
  79. 79.
    Crowder, L.B., Cooper, W.E.: Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802–1813 (1982). doi: 10.2307/1940122 CrossRefGoogle Scholar
  80. 80.
    Schlosser, I.J.: Fish community structure and function along two habitat gradients in a headwater stream. Ecol. Monogr. 52, 395–414 (1982). doi: 10.2307/2937352 CrossRefGoogle Scholar
  81. 81.
    Walker, B.K., Jordan, L.K.B., Spieler, R.E.: Relationship of reef fish assemblages and topographic complexity on southeastern Florida coral reef habitats. J. Coast. Res. (2009). doi: 10.2112/SI53-005.1 Google Scholar
  82. 82.
    Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., Monaco, M.E.: Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol. Model. 204, 9–21 (2007). doi: 10.1016/j.ecolmodel.2006.12.017 CrossRefGoogle Scholar
  83. 83.
    Friedlander, A.M., Parrish, J.D.: Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998)CrossRefGoogle Scholar
  84. 84.
    Luckhurst, B.E., Luckhurst, K.: Analysis of the influence of substrate variables on coral reef fish communities. Mar. Biol. 49, 317–323 (1978)CrossRefGoogle Scholar
  85. 85.
    Ardron, J., Sointula, B.C.: A GIS recipe for determining benthic complexity: an indicator of species richness. In: Breman, J. (ed.) Marine Geography: GIS for the Oceans and Seas. Environmental Systems Research Institute, pp. 169–175. Redlands, CA (2002)Google Scholar
  86. 86.
    Gratwicke, B., Speight, M.R.: The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005)CrossRefGoogle Scholar
  87. 87.
    Lawson, G.L., Barange, M., Fréon, P.: Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci. J. Cons. 58, 275–287 (2001)CrossRefGoogle Scholar
  88. 88.
    Massé, J., Koutsikopoulos, C., Patty, W.: The structure and spatial distribution of pelagic fish schools in multispecies clusters: an acoustic study. ICES J. Mar. Sci. J. Cons. 53, 155–160 (1996)CrossRefGoogle Scholar
  89. 89.
    Weill, A., Scalabrin, C., Diner, N.: MOVIES-B: an acoustic detection description software. Application to shoal species’ classification. Aquat. Living Resour. 6, 255–267 (1993)CrossRefGoogle Scholar
  90. 90.
    Fréon, P., Gerlotto, F., Soria, M.: Changes in school structure according to external stimuli: description and influence on acoustic assessment. Fish. Res. 15, 45–66 (1992)CrossRefGoogle Scholar
  91. 91.
    Castillo, J., Robotham, H.: Spatial structure and geometry of schools of sardine (Sardinops sagax) in relation to abundance, fishing effort, and catch in northern Chile. ICES J. Mar. Sci. J. Cons. 61, 1113–1119 (2004). doi: 10.1016/j.icesjms.2004.07.011 CrossRefGoogle Scholar
  92. 92.
    Korneliussen, R.J., Heggelund, Y., Eliassen, I.K., Øye, O.K., Knutsen, T., Dalen, J.: Combining multibeam-sonar and multifrequency-echosounder data: examples of the analysis and imaging of large euphausiid schools. ICES J. Mar. Sci. J. Cons. 66, 991–997 (2009). doi: 10.1093/icesjms/fsp092 CrossRefGoogle Scholar
  93. 93.
    Soria, M., Fréon, P., Gerlotto, F.: Analysis of vessel influence on spatial behaviour of fish schools using a multi-beam sonar and consequences for biomass estimates by echo-sounder. ICES J. Mar. Sci. J. Cons. 53, 453–458 (1996)CrossRefGoogle Scholar
  94. 94.
    Kloser, R.J., Ryan, T.E., Macaulay, G.J., Lewis, M.E.: In situ measurements of target strength with optical and model verification: a case study for blue grenadier, Macruronus novaezelandiae. ICES J. Mar. Sci. J. Cons. 68, 1986–1995 (2011)CrossRefGoogle Scholar
  95. 95.
    Ryan, T.E., Kloser, R.J., Macaulay, G.J.: Measurement and visual verification of fish target strength using an acoustic-optical system attached to a trawlnet. ICES J. Mar. Sci. J. Cons. 66, 1238–1244 (2009). doi: 10.1093/icesjms/fsp122 CrossRefGoogle Scholar
  96. 96.
    Siwabessy, P.J.W., Penrose, J.D., Kloser, R.J., Fox, D.R.: Seabed habitat classification. In: Proceedings of the International Conference High Resolution Shallow Water, pp. 1–9 (1999)Google Scholar
  97. 97.
    Carrigy, M.A., Fairbridge, R.W.: Recent sedimentation, physiography and structure of the continental shelves of Western Australia. J. R. Soc. West. Aust. 38, 65–95 (1954)Google Scholar
  98. 98.
    Nicholson, M.D., Jennings, S.: Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004). doi: 10.1016/j.icesjms.2003.09.004 CrossRefGoogle Scholar

Copyright information

© Australian Acoustical Society 2017

Authors and Affiliations

  1. 1.Centre for Marine Science and TechnologyCurtin UniversityPerthAustralia
  2. 2.Wageningen Marine ResearchIJmuidenThe Netherlands
  3. 3.Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartAustralia
  4. 4.Echoview Software Pty LtdHobartAustralia
  5. 5.CMSTCurtin UniversityBentleyAustralia

Personalised recommendations