Skip to main content
Log in

The Acoustics of Vineyard Halls, is it so Great After all?

Acoustics Australia Aims and scope Submit manuscript

Cite this article


Many contemporary concert halls are so called surround or vineyard design, in which audience members gather around the orchestra. However, not so many articles on the acoustics of such halls have been published. This article presents the acoustical differences of vineyard and shoebox designs. A recently opened vineyard-type hall, Helsinki Music Centre, is used as a case study, and we discuss its perceptual acoustic qualities and investigate the reasons for subjective observations with objective room-acoustic measurements. In particular, we focus on factors affecting the perception of music dynamics. Results from the objective parameters and spatiotemporal analysis show that the sound field is dominated by the direct sound and early energy in the median plane. These findings are in agreement with the perceptual effects, and resemble the acoustic conditions of another vineyard hall, Berlin Philharmonie. A comparison to a classical shoebox hall reveals fundamental differences in the structure of the sound field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Pätynen, J., Tervo, S., Robinson, P.W., Lokki, T.: Concert halls with strong lateral reflections enhance musical dynamics. Proc. Natl. Acad. Sci. Am. 111(12), 4409 (2014)

    Article  Google Scholar 

  2. Nagata Acoustics, Helsinki Music Centre factsheet, cited 10 February 2015. URL:

  3. Gade, A.C.: Auditorium projects in Denmark since year 2000; room acoustic research and experience materialized. In: Joint Baltic-Nordic Acoustics Meeting (BNAM 2012), Odense, Denmark (2012)

  4. Clements, P.: Orchestral performance practice and the perception of acoustic quality in concert halls. In: International Symposium on Room Acoustics (ISRA 2013). International Symposium on Room Acoustics 2013, Toronto, Canada (2013)

  5. Luce, D.: Dynamic spectrum changes of orchestral instruments. J. Audio Eng. Soc 23(7), 565 (1975)

    Google Scholar 

  6. Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF database. In: IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (WASPAA2001), pp. 99–102. New York (2001)

  7. Sivonen, V.P., Ellermeier, W.: Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation. J. Acoust. Soc. Am. 119(5), 2965 (2006)

    Article  Google Scholar 

  8. Moore, B.C.J., Glasberg, B.R.: Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear. Res. 28, 209 (1987)

    Article  Google Scholar 

  9. Marshall, A.H., Barron, M.: Spatial responsiveness in concert halls and the origins of spatial impression. Appl. Acoust. 62(2), 91 (2001)

    Article  Google Scholar 

  10. Kuhl, W.: Räumlichkeit als Komponente des Raumeindrucks. Acta Acust United Ac 40(3), 167 (1978)

    Google Scholar 

  11. Keet, W.V.: The influence of early lateral reflections on the spatial impression. In: Proceedings of the 6th International Congress on Acoustics, vol. 3, pp. E53–E56. Tokyo, Japan (1968)

  12. Marshall, A.H.: A note on the importance of room cross-section in concert halls. J. Sound. Vib. 5(1), 100 (1967)

    Article  Google Scholar 

  13. Beranek, L.: Concert Halls and Opera Houses: Music, Acoustics, and Architecture. Springer, New York (2004)

    Book  Google Scholar 

  14. Lokki, T., Pätynen, J., Tervo, S., Siltanen, S., Savioja, L.: Engaging concert hall acoustics is made up of temporal envelope preserving reflections. J. Acoust. Soc. Am. 129(6), EL223 (2011)

    Google Scholar 

  15. ISO 3382–1:2009: Acoustics—Measurement of room acoustic parameters—I: Performance spaces. International Standards Organization, Geneva, Switzerland (2009)

  16. Pätynen, J., Tervo, S., Lokki, T.: Analysis of concert hall acoustics via visualizations of time-frequency and spatiotemporal responses. J. Acoust. Soc. Am.133(2), 842 (2013)

    Article  Google Scholar 

  17. Pätynen, J.: A virtual symphony orchestra for studies on concert hall acoustics. Ph.D. thesis, Aalto University School of Science. (2011)

  18. Tervo, S., Pätynen, J., Kuusinen, A., Lokki, T.: Spatial decomposition method for room impulse responses. J. Audio. Eng. Soc. 61(1/2), 16 (2013)

  19. Barron, M., Lee, L.J.: Energy relations in concert auditoriums. I. J. Acoust. Soc. Am. 84(2), 618 (1988)

    Article  Google Scholar 

  20. Pätynen, J., Lokki, T.: Directivities of symphony orchestra instruments. Acta Acustica United with Acustica 96(1), 138 (2010)

    Article  Google Scholar 

Download references


The Academy of Finland [257099] is funding this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jukka Pätynen.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pätynen, J., Lokki, T. The Acoustics of Vineyard Halls, is it so Great After all?. Acoust Aust 43, 33–39 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: