Skip to main content
Log in

An Innovative Signal Processing Method to Extract Ants’ Walking Signals

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Eusocial insects such as bees, ants and termites communicate multi-modally using chemical, visual, tactile and vibrational cues. While much work has been done on chemical and visual communications, the tactile and vibrational communication channel is somewhat neglected. Recent research indicates that structural vibrations caused by ants can be used to identify their activity level. However, these structural vibrations are caused by the response of the substrate excited by ants walking. The objective of this study is to determine the footprint of ants walking by separating the response of the substrate from the walking signal. The vibration of the substrate (in this case, a wooden veneer) caused by ants walking is measured by a laser vibrometer in an experimental setup isolated from environmental vibrations. By filtering the recorded vibration signal using a technique based on the dynamics in phase space followed by deconvolution from the response of the veneer using Tikhonov regularisation, the ant’s walking signal is extracted and its nature determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiener, N.: Cybernetics: or control and communication in the animal and the machine. The Massachusetts Institute of Technology, Cambridge (1965)

    Google Scholar 

  2. Hölldobler, B.: Multimodal signals in ant communication. J. Comp. Physiol. A 184, 129–141 (1999)

    Article  Google Scholar 

  3. Trong Nguyen, T., Akino, T.: Worker aggression of ant Lasius japonicus enhanced by termite soldier-specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15(4), 422–429 (2012)

    Article  Google Scholar 

  4. Jackson, D.E., Ratnieks, F.L.W.: Communication in ants. Curr. Biol. 16, 1–5 (2010)

    Google Scholar 

  5. Kretz, R.: Ants can outsee us all. New Sci. 83, 656f (1979)

    Google Scholar 

  6. Narendra, A., Reid, S.F., Hemmi, J.M.: The twilight zone: ambient light levels trigger activity in primitive ants. Proc. R. Soc. B 277(1687), 1531–1538 (2010)

    Article  Google Scholar 

  7. Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A., et al.: Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. R. Soc. B 278(1709), 1141–1149 (2011)

    Article  Google Scholar 

  8. Evans, T.A., Lai, J.C.S., Toledano, E., McDowall, L., Rakotonarivo, S., Lenz, M.: Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102(10), 3732–3737 (2005)

    Article  Google Scholar 

  9. Inta, R., Evans, T.A., Lai, J.C.S., Lenz, M.: What do vibrations have to do with termites’ food choice? Acoust. Aust. 35, 73–77 (2007)

    Google Scholar 

  10. Evans, T.A., Inta, R., Lai, J.C.S., Prueger, S., Foo, N.W., Fu, E.W., et al.: Termites eavesdrop to avoid competitors. Proc. R. Soc. B 276(1675), 4035–4041 (2009)

    Article  Google Scholar 

  11. Roces, F., Tautz, J.: Ants are deaf. J. Acoust. Soc. Am. 109(6), 3080–3082 (2001)

    Article  Google Scholar 

  12. Buehlmann, C., Hansson, B.S., Knaden, M.: Desert ants learn vibration and magnetic landmarks. PLoS ONE 7(3), e33117 (2012)

  13. Masters, W.M., Tautz, J., Fletcher, N.H., Markl, H.: Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. J. Comp. Physiol. A 150, 239–249 (1983). doi:10.1007/BF00606374

    Article  Google Scholar 

  14. Roces, F., Hölldobler, B.: Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37(5), 297–302 (1995)

    Article  Google Scholar 

  15. Meyhöfer, R., Casas, J.: Vibratory stimuli in host location by parasitic wasps. J. Insect Physiol. 45(11), 967–971 (1999)

    Article  Google Scholar 

  16. Sala, M., Casacci, L.P., Balletto, E., Bonelli, S., Barbero, F.: Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9(4), e94341 (2014)

    Article  Google Scholar 

  17. Oberst, S., Nava-Baro, E., Lai, J.C.S., Evans, T.A.: Quantifying ant activity using vibration measurements. PLoS ONE 9(3), e90902 (2014)

    Article  Google Scholar 

  18. Nava-Baro, E., Oberst, S., Lai, J.C.S., Evans, T.A.: A signal processing method for extracting vibration signals due to ants’ activities. In: INCE Internoise and Noise-Con Congress and Conference Proceedings (ISSN 0736–2935), vol. 247, No. 8, pp. 327–336, 15–18 September 2013, Innsbruck (Austria)

  19. Easterling, K.E., Harrysson, R., Gibson, L.J., Ashby, M.F.: On the mechanics of balsa and other woods. Proc. R. Soc. Lond. A Math. Phys. Sci. 383(1784), 31–41 (1982)

    Article  Google Scholar 

  20. Full, R.J., Tu, M.S.: Mechanics of six-legged runners. J. Exp. Biol. 148, 129–146 (1990)

    Google Scholar 

  21. Fischer, H., Schmidt, J., Haas, R., Büschges, A.: Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. J. Neurophysiol. 85(1), 341–353 (2001)

    Google Scholar 

  22. Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobotics 8, 3 (2014)

    Article  Google Scholar 

  23. Zollikofer, C.P.E.: Stepping pattern in Ants, I. Influence on speed and curvature. J. Exp. Biol. 192, 95–106 (1994)

    Google Scholar 

  24. Zollikofer, C.P.E.: Stepping pattern in Ants, II. Influence of body morphology. J. Exp. Biol. 192, 107–118 (1994)

    Google Scholar 

  25. Zollikofer, C.P.E.: Stepping pattern in Ants, II. Influence of load. J. Exp. Biol. 192, 119–127 (1994)

    Google Scholar 

  26. Reinhardt, L., Blickhan, R.: Level locomotion in wood ants: evidence for grounded running. J. Exp. Biol. 217, 2358–2370 (2014)

    Article  Google Scholar 

  27. Oberst, S., Lai, J.C.S., Evans, T.A.: Novel method for pairing wood samples for choice tests. PLoS ONE 9(2), e88835 (2014)

    Article  Google Scholar 

  28. Mailleux, A.C., Buffin, A., Detrain, C., Deneubourg, J.L.: Recruitment in starved nests: the role of direct and indirect interactions between scouts and nestmates in the ant Lasius niger. Insectes Sociaux 58, 559–567 (2011)

    Article  Google Scholar 

  29. Fletcher, N.H., Rossing, T.D.: The physics of musical instruments. Springer, New York (1998)

  30. Abarbanel, H.D.I.: Analysis of observed chaotic data. Springer, New York (1996)

    Book  MATH  Google Scholar 

  31. Schreiber, T.: Extremely simple nonlinear noise reduction method. Phys. Rev. E 47, 2401–2404 (1993)

    Article  MathSciNet  Google Scholar 

  32. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos: an interdisciplinary. J. Nonlinear Sci. 9(2), 413–435 (1999)

    MATH  Google Scholar 

  33. Birgé, L., Massart, P.: From model selection to adaptive estimation. In: Festschrift for Lucien Lecam: Research Papers in Probability and Statistics. Springer-Verlag, NewYork, (1997)

  34. Grace Chang, S., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image process. 9, 1532–1546 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tikhonov, A., Arsenin, V.Y., John, F.: Solutions of ill-posed problems. Wiley, New York (1977)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number DP110102564). We acknowledge the special research permit for research-conditions granted by the Forestry Corporation of NSW (FCNSW). The first author received an ECR travel grant provided by the AAS NSW Division to attend the Internoise 2014 conference in Melbourne and the Gerald Riley best paper award of the Internoise 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Oberst.

Additional information

This paper received the Gerald Riley Award for the best paper presented at Inter.noise 2014, Melbourne November 16–19, where at least one of the authors is a member of the Australian Acoustical Society.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberst, S., Nava-Baro, E., Lai, J.C.S. et al. An Innovative Signal Processing Method to Extract Ants’ Walking Signals. Acoust Aust 43, 87–96 (2015). https://doi.org/10.1007/s40857-015-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-015-0003-x

Keywords

PACS

Navigation