Skip to main content
Log in

Subject-Specific Session-to-Session Transfer Learning Strategies for Increasing Brain-Computer Interface Performance during Upper Extremity Neurorehabilitation in Stroke

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

To assess if transfer learning strategies can improve stroke patients’ ability to control a Brain-computer interface (BCI) based on motor intention across an upper extremity neurorehabilitation intervention.

Methods

Three subject-specific session-to-session training strategies were retrospectively assessed in the present study, using information acquired during a BCI intervention in 12 stroke patients. One strategy used data from the previous therapy session (previous session), another used data from all previous sessions (accumulative) and another initially used previous session’s data and was updated with data acquired during the current session (instantaneous).

Results

Classification accuracy was significantly higher with the instantaneous strategy (median = 76.4%, IQR = [68.7%, 81.5%]) compared to the obtained with the accumulative (71.67%, [65.1%, 78.5%]) and previous session (69.2%, [59%, 77.4%]) strategies. Median classification accuracies across sessions were also higher with the instantaneous strategy in each BCI intervention session.

Conclusion

The instantaneous strategy could allow stroke patients to achieve a competitive level of BCI performance during a motor intention BCI intervention without reducing effective therapy time or requiring data from other patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  PubMed  Google Scholar 

  2. Kerous, B., Skola, F., & Liarokapis, F. (2018). EEG-based BCI and video games: A progress report. Virtual Reality, 22(2), 119–135. https://doi.org/10.1007/s10055-017-0328-x

    Article  Google Scholar 

  3. Morin, C. (2011). Neuromarketing: The new science of consumer behavior. Society, 48(2), 131–135. https://doi.org/10.1007/s12115-010-9408-1

    Article  Google Scholar 

  4. Bamdad, M., Zarshenas, H., & Auais, M. A. (2015). Application of BCI systems in neurorehabilitation: A scoping review. Disability and Rehabilitation Assistive Technology, 10(5), 355–364. https://doi.org/10.3109/17483107.2014.961569

    Article  PubMed  Google Scholar 

  5. Mane, R., Chouhan, T., & Guan, C. (2020). BCI for stroke rehabilitation: Motor and beyond. Journal of Neural Engineering, 17(4), 041001. https://doi.org/10.1088/1741-2552/aba162

    Article  PubMed  Google Scholar 

  6. Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., & Martin, S. S. (2022). Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 145(8). https://doi.org/10.1161/CIR.0000000000001052

  7. Hatem, S. M., Saussez, G., della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate Upper Extremity Recovery. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00442

  8. Frolov, A. A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L., … Bushkova, Y. (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00400

  9. Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., … Guan, C. (2015). A randomized controlled trial of eeg-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clinical EEG and Neuroscience, 46(4), 310–320. https://doi.org/10.1177/1550059414522229

  10. Ang, K. K., Guan, C., Phua, K. S., Wang, C., Zhou, L., Tang, K. Y., … Chua, K. S. G. (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Frontiers in Neuroengineering, 7. https://doi.org/10.3389/fneng.2014.00030

  11. Monteiro, K. B., Cardoso, M. S., Cabral, V. R. da, Santos, C., dos, A. O. B., Silva, P. S., de da, Castro, J. B. P., & de Vale, R. G. (2021). S. Effects of motor imagery as a complementary resource on the rehabilitation of stroke patients: A meta-analysis of randomized trials. Journal of Stroke and Cerebrovascular Diseases, 30(8), 105876. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105876

  12. Remsik, A. B., Dodd, K., Williams Jr, L., Thoma, J., Jacobson, T., Allen, J. D., … Prabhakaran, V. (2018). Behavioral outcomes following brain-computer interface intervention for upper extremity rehabilitation in stroke: A randomized controlled trial. Frontiers in neuroscience, 12, 752. https://doi.org/10.3389/fnins.2018.00752

  13. Kim, T., Kim, S., & Lee, B. (2016). Effects of Action Observational Training Plus Brain-Computer interface-based functional electrical stimulation on paretic Arm Motor Recovery in patient with stroke: A randomized controlled trial. Occupational Therapy International, 23(1), 39–47. https://doi.org/10.1002/oti.1403

    Article  PubMed  Google Scholar 

  14. Jeunet, C., Jahanpour, E., & Lotte, F. (2016). Why standard brain-computer interface (BCI) training protocols should be changed: An experimental study. Journal of Neural Engineering, 13(3), 036024. https://doi.org/10.1088/1741-2560/13/3/036024

    Article  PubMed  Google Scholar 

  15. López-Larraz, E., Sarasola-Sanz, A., Irastorza-Landa, N., Birbaumer, N., & Ramos-Murguialday, A. (2018). Brain-machine interfaces for rehabilitation in stroke: A review. Neurorehabilitation, 43, 77–97. https://doi.org/10.3233/NRE-172394

    Article  PubMed  Google Scholar 

  16. McFarland, D. J., & Wolpaw, J. R. (2017). EEG-based brain–computer interfaces. Current Opinion in Biomedical Engineering, 4, 194–200. https://doi.org/10.1016/j.cobme.2017.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arias-Carrion, O. (2021). Brain-computer interface coupled to a robotic hand orthosis for stroke patients’ neurorehabilitation: A crossover feasibility study. Frontiers in Human Neuroscience, 15(June), 1–15. https://doi.org/10.3389/fnhum.2021.656975

    Article  Google Scholar 

  18. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F. L., … Birbaumer, N. (2013). Brain-machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 74(1), 100–108. https://doi.org/10.1002/ana.23879

  19. Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., … Millán, J. D. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature communications, 9(1), 2421. https://doi.org/10.1038/s41467-018-04673-z

  20. Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016). Transfer learning in brain-computer interfaces. IEEE Computational Intelligence Magazine, 11(1), 20–31. https://doi.org/10.1109/MCI.2015.2501545

    Article  Google Scholar 

  21. Ang, K. K., & Guan, C. (2017). EEG-Based strategies to detect motor imagery for control and rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(4), 392–401. https://doi.org/10.1109/TNSRE.2016.2646763

    Article  PubMed  Google Scholar 

  22. López-Larraz, E., Ibáñez, J., Trincado-Alonso, F., Monge-Pereira, E., Pons, J. L., & Montesano, L. (2018). Comparing recalibration strategies for electroencephalography-based decoders of movement intention in neurological patients with motor disability. International Journal of Neural Systems, 28(07), 1750060. https://doi.org/10.1142/S0129065717500605

    Article  PubMed  Google Scholar 

  23. Giles, J., Ang, K. K., Phua, K. S., & Arvaneh, M. (2022). A transfer learning algorithm to reduce brain-computer interface calibration time for long-term users. Frontiers in Neuroergonomics, 3. https://doi.org/10.3389/fnrgo.2022.837307

  24. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Müller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56. https://doi.org/10.1109/MSP.2007.909009

    Article  Google Scholar 

  25. Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., & Zhang, H. (2012). Filter bank common spatial pattern algorithm on BCI Competition IV datasets 2a and 2b. Frontiers in Neuroscience, 6, 39. https://doi.org/10.3389/fnins.2012.00039

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carino-Escobar, R. I., Rodriguez-Barragan, M. A., Carrillo-Mora, P., & Cantillo-Negrete, J. (2022). Brain-computer interface as complementary therapy for hemiparesis in an astrocytoma patient. Neurological Sciences, 43(4), 2879–2881. https://doi.org/10.1007/s10072-022-05924-0

    Article  PubMed  Google Scholar 

  27. Cantillo-Negrete, J. (2022). A case report: Upper limb recovery from stroke related to SARS-CoV-2 infection during an intervention with a brain-computer interface. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.1010328

  28. Carino-Escobar, R. I., Rodríguez-García, M. E., Carrillo-Mora, P., Valdés-Cristerna, R., & Cantillo-Negrete, J. (2023). Continuous versus discrete robotic feedback for brain-computer interfaces aimed for neurorehabilitation. Frontiers in Neurorobotics, 17. https://doi.org/10.3389/fnbot.2023.1015464

  29. Irimia, D. C., Ortner, R., Poboroniuc, M. S., Ignat, B. E., & Guger, C. (2018). High classification accuracy of a motor imagery based brain-computer interface for stroke rehabilitation training. Frontiers in Robotics and AI, 5, 130. https://doi.org/10.3389/frobt.2018.00130

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vourvopoulos, A., Jorge, C., Abreu, R., Figueiredo, P., Fernandes, J. C., & Bermúdez i Badia, S. (2019). Efficacy and brain imaging correlates of an immersive motor imagery BCI-Driven VR system for upper limb motor rehabilitation: A clinical case report. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00244

  31. Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C. W. K., Wang, C., … Zhang, H. (2011). A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Clinical EEG and Neuroscience, 42(4), 253–258. https://doi.org/10.1177/155005941104200411

  32. Wang, C., Phua, K. S., Ang, K. K., Guan, C., Zhang, H., Rongsheng Lin, … Kuah, C. W. K. (2009). A feasibility study of non-invasive motor-imagery BCI-based robotic rehabilitation for stroke patients. In 2009 4th International IEEE/EMBS Conference on Neural Engineering (pp. 271–274). IEEE. https://doi.org/10.1109/NER.2009.5109285

  33. Irimia, D. C., Cho, W., Ortner, R., Allison, B. Z., Ignat, B. E., Edlinger, G., & Guger, C. (2017). Brain-computer interfaces with Multi‐sensory feedback for stroke rehabilitation: A case study. Artificial Organs, 41(11). https://doi.org/10.1111/aor.13054

  34. Arvaneh, M., Guan, C., Ang, K. K., Ward, T. E., Chua, K. S. G., Kuah, C. W. K., … Wang, C. (2017). Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement. Neural Computing and Applications, 28(11), 3259–3272. https://doi.org/10.1007/s00521-016-2234-7

  35. Barsotti, M., Leonardis, D., Loconsole, C., Solazzi, M., Sotgiu, E., Procopio, C., … Frisoli, A. (2015). A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 49–54). IEEE. https://doi.org/10.1109/ICORR.2015.7281174

  36. Nagarajan, A., Robinson, N., Ang, K. K., Chua, K. S. G., Chew, E., & Guan, C. (2024). Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain–computer interface. Journal of Neural Engineering, 21(1), 016007. https://doi.org/10.1088/1741-2552/ad152f

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Consejo Nacional de Ciencia y Tecnología (CONACYT) for supporting this work with grant number SALUD-2018-02-B-S-45803. Authors would also like to thank Martín Emiliano Rodríguez-García for his assistance in programming some of the software used to assess BCI performance. Also, authors would like to thank Marlene A. Rodriguez Barragan, Claudia Hernandez-Arenas and Jimena Quinzaños-Fresnedo for their help in patients’ recruitment.

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) (Grant number SALUD-2018-02-B-S-45803).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jessica Cantillo-Negrete, Luis A. Franceschi-Jimenez, Paul Carrillo-Mora and Ruben I. Carino-Escobar. The first draft of the manuscript was written by Ruben I. Carino-Escobar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Jessica Cantillo-Negrete.

Ethics declarations

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics and Research Committees of the National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra with approval numbers 36/15 and 25/19 AC.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carino-Escobar, R.I., Franceschi-Jimenez, L.A., Carrillo-Mora, P. et al. Subject-Specific Session-to-Session Transfer Learning Strategies for Increasing Brain-Computer Interface Performance during Upper Extremity Neurorehabilitation in Stroke. J. Med. Biol. Eng. 44, 596–606 (2024). https://doi.org/10.1007/s40846-024-00891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00891-7

Keywords

Navigation