Skip to main content

Advertisement

Log in

Ultrasound Delta CBE Imaging: A New Approach Based on Local Energy Subtraction to Localization of the HIFU Focal Spot Using Changes in Backscattered Energy

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

High-intensity focused ultrasound (HIFU) is a promising non-invasive technique for thermal ablation of tumors. Positioning the focal point of the HIFU accurately prior to the procedure is crucial to the success of the treatment. A change in backscattered energy (CBE) in ultrasound images has been shown to allow visualization of thermal information and can be used to locate the focal spot of HIFU prior to ablation. In CBE imaging, however, tailing artifacts may exist below the focal point of HIFU to hinder the identification of the HIFU focal spot.

Methods

This study proposed ultrasound delta CBE (DCBE) imaging that reduces CBE artifacts by local energy subtraction between measured and the reference envelope images. Phantom experiments were performed for validation of the proposed method. A HIFU system operating at a frequency of 2.12 MHz was used to heat phantoms, which were imaged with a clinical ultrasound scanner equipped with a 3-MHz convex transducer for analysis of CBE and DCBE data.

Results

The results showed that the DCBE value increases monotonically with temperature (correlation coefficient = 0.90). Particularly, DCBE imaging can identify the HIFU focal spot, suppress tailing artifacts, and increase the contrast between the focal and artifact zones by 8 dB in comparison with conventional CBE imaging.

Conclusion

Based on this study, DCBE imaging may be an effective method of locating HIFU focal points through ultrasound backscattered energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The experimental data are available by request.

References

  1. Wu, F., Zhou, L., & Chen, W. R. (2007). Host antitumour immune responses to HIFU ablation. International Journal of Hyperthermia, 23(2), 165–171.

    Article  CAS  PubMed  Google Scholar 

  2. O’donnell, M., & Flax, S. W. (1988). Phase aberration measurements in medical ultrasound: Human studies. Ultrasonic Imaging, 10(1), 1–11.

    Article  PubMed  Google Scholar 

  3. Damianou, C. A., Sanghvi, N. T., Fry, F. J., & Maass-Moreno, R. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. The Journal of the Acoustical Society of America, 102(1), 628–634.

    Article  CAS  PubMed  Google Scholar 

  4. Han, Y., Hou, G. Y., Wang, S., & Konofagou, E. (2015). High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI). Physics in Medicine & Biology, 60(15), 5911.

    Article  Google Scholar 

  5. Tyréus, P. D., & Diederich, C. (2004). Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions. Physics in Medicine & Biology, 49(4), 533.

    Article  Google Scholar 

  6. Maass-Moreno, R., & Damianou, C. A. (1996). Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model. The Journal of the Acoustical Society of America, 100(4), 2514–2521.

    Article  CAS  PubMed  Google Scholar 

  7. Simon, C., VanBaren, P., & Ebbini, E. S. (1998). Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4), 1088–1099.

    Article  CAS  PubMed  Google Scholar 

  8. Straube, W. L., & Arthur, R. M. (1994). Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry. Ultrasound in Medicine & Biology, 20(9), 915–922.

    Article  CAS  Google Scholar 

  9. Trobaugh, J. W., Arthur, R. M., Straube, W. L., & Moros, E. G. (2008). A simulation model for ultrasonic temperature imaging using change in backscattered energy. Ultrasound in Medicine & Biology, 34(2), 289–298.

    Article  Google Scholar 

  10. Rangraz, P., Behnam, H., Sobhebidari, P., & Tavakkoli, J. (2014). Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method. Ultrasound in Medicine & Biology, 40(12), 2841–2850.

    Article  Google Scholar 

  11. Maraghechi, B., Kolios, M. C., & Tavakkoli, J. (2019). Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues. International Journal of Hyperthermia, 36(1), 963–973.

    Article  Google Scholar 

  12. Seo, J., Kim, S. K., Kim, Y. S., Choi, K., Kong, D. G., & Bang, W. C. (2014). Motion compensation for ultrasound thermal imaging using motion-mapped reference model: An in vivo mouse study. IEEE Transactions on Biomedical Engineering, 61(11), 2669–2678.

    Article  PubMed  Google Scholar 

  13. Arthur, R. M., Straube, W. L., Starman, J. D., & Moros, E. G. (2003). Noninvasive temperature estimation based on the energy of backscattered ultrasound. Medical Physics, 30(6), 1021–1029.

    Article  PubMed  Google Scholar 

  14. Arthur, R. M., Straube, W. L., Trobaugh, J. W., & Moros, E. G. (2005). Non-invasive estimation of hyperthermia temperatures with ultrasound. International Journal of Hyperthermia, 21(6), 589–600.

    Article  CAS  PubMed  Google Scholar 

  15. Tsui, P. H., Chien, Y. T., Liu, H. L., Shu, Y. C., & Chen, W. S. (2012). Using ultrasound CBE imaging without echo shift compensation for temperature estimation. Ultrasonics, 52(7), 925–935.

    Article  PubMed  Google Scholar 

  16. Choi, K., Kong, D., Park, J., Cho, J., & Lee, H. K. (2012). Noninvasive ultrasound temperature imaging with fusion algorithm. 2012 IEEE International Ultrasonics Symposium. https://doi.org/10.1109/ULTSYM.2012.0233

    Article  Google Scholar 

  17. Zhang, L., Li, Q., Wang, C. Y., & Tsui, P. H. (2018). Ultrasound single-phase CBE imaging for monitoring radiofrequency ablation. International Journal of Hyperthermia, 35(1), 548–558.

    Article  PubMed  Google Scholar 

  18. Yang, K., Li, Q., Liu, H. L., Chen, C. K., Huang, C. W., Chen, J. R., & Tsui, P. H. (2020). Frequency-domain CBE imaging for ultrasound localization of the HIFU focal spot: A feasibility study. Scientific Reports, 10(1), 5468.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chan, H. J., Zhou, Z., Fang, J., Tai, D. I., Tseng, J. H., Lai, M. W., & Tsui, P. H. (2021). Ultrasound sample entropy imaging: A new approach for evaluating hepatic steatosis and fibrosis. IEEE Journal of Translational Engineering in Health and Medicine, 9, 1–12.

    Article  Google Scholar 

  20. Xia, J., Li, Q., Liu, H. L., Chen, W. S., & Tsui, P. H. (2013). An approach for the visualization of temperature distribution in tissues according to changes in ultrasonic backscattered energy. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2013/682827

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shaswary, E., Assi, H., Yang, C., Kumaradas, J. C., Kolios, M. C., Peyman, G., & Tavakkoli, J. (2021). Real-time non-invasive control of tissue temperature using high-frequency ultrasonic backscattered energy. 2021 IEEE International Ultrasonics Symposium (IUS). https://doi.org/10.1109/IUS52206.2021.9593438

    Article  Google Scholar 

  22. Wang, C. Y., Zhou, Z., Chang, Y. H., Ho, M. C., Lu, C. M., Wu, C. H., & Tsui, P. H. (2022). Ultrasound single-phase CBE imaging for monitoring radiofrequency ablation of the liver tumor: A preliminary clinical validation. Frontiers in Oncology, 12, 894246.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, F. F., He, Q., Gao, J., Pan, A., Sun, S., Liang, X., & Luo, J. (2019). Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies. Medical physics, 46(9), 3864–3876.

    Article  CAS  PubMed  Google Scholar 

  24. Jahns, M., MacDougall, D., & Adamson, R. B. (2018). Thermoacoustic lensing in ultrasound imaging of nonechogenic tissue during high-intensity focused ultrasound exposure. Ultrasonic Imaging, 40(3), 143–157.

    Article  PubMed  Google Scholar 

  25. Alvarenga, A. V., Teixeira, C. A., von Krüger, M. A., & Pereira, W. C. (2020). Method for estimating average grey-level’s measurement uncertainty from ultrasound images for non-invasive estimation of temperature in different tissue types. Ultrasonics, 106, 106139.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by National Science and Technology Council in Taiwan (NSTC 112–2221-E-182 -006-MY3). This work was supported in part by the Postgraduate Research Innovation Project of Tianjin, China (2021YJSB118) and the Tianjin Natural Science Foundation (22JCZDJC00220).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. K.Y., Q.L and X.Z. wrote the manuscript text and prepared figures. P.H.T. supported the HIFU facilities and designed the measurement protocol. C.Y.W. worked on the experiments and data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Po-Hsiang Tsui.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Li, Q., Zhou, X. et al. Ultrasound Delta CBE Imaging: A New Approach Based on Local Energy Subtraction to Localization of the HIFU Focal Spot Using Changes in Backscattered Energy. J. Med. Biol. Eng. 44, 618–627 (2024). https://doi.org/10.1007/s40846-024-00887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00887-3

Keywords

Navigation