Skip to main content

Advertisement

Log in

A Review of Brain Tumor Segmentation Using MRIs from 2019 to 2023 (Statistical Information, Key Achievements, and Limitations)

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

A brain tumor is defined as any group of atypical cells occupying space in the brain. There are more than 120 types of them. MRI scans are used for brain tumor diagnosis since they are more detailed and three-dimensional. Accurate localization and segmentation of the tumor portion increase the patients' survival rates. To this end, we presented a systematic review of the latest development of brain tumor segmentation from MRI.

Methods

To find related articles, we searched the keywords like "brain tumors" and "segmentation by MRI”. The searches were performed on Elsevier, Springer, Wiley, and the leading conferences in the field of medical image processing. A total of 79 publications dedicated to tumor segmentation from years 2019 to 2023 were selected and categorized into four categories: non-Artificial Intelligence, machine learning, deep learning, and hybrid deep learning methods.

Results

We reviewed the trending techniques of tumor segmentation and provided a unified and integrated overview of the current state-of-the-art. The article dealt with providing the capabilities and shortcomings associated with each approach and the restrictions on using automated medical image segmentation techniques in clinical practice were determined.

Conclusion

In this study, the advancement of brain tumor segmentation by MRI is discussed, focusing more on recent articles. It identified the restrictions of the presented techniques regarding the four mentioned categories, which prevent them from being used in clinical practice. The literature will guide the researchers to become familiar with both the leading techniques and the potential problems that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Yang, F., Suri, J. S., & Sonka, M. (2007). Volumetric Segmentation Using Shape Models In The Level Set Framework. In Deformable Models (pp. 161–207). https://doi.org/10.1007/978-0-387-68343-0_6

  2. Haque, S., Norbert, C. C., & Patra, C. R. (2020). Nanomedicine: future therapy for brain cancers. Nano Drug Delivery Strategies for the Treatment of Cancers. INC. https://doi.org/10.1016/B978-0-12-819793-6.00003-5

  3. Rabai, F., & Ramani, R. (2017). Magnetic resonance imaging: Anesthetic implications. Essentials of neuroanesthesia. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805299-0.00031-2

    Book  Google Scholar 

  4. Xiong, S., Wu, G., Fan, X., Feng, X., Huang, Z., Cao, W., & Shi, Z. (2021). MRI-based brain tumor segmentation using FPGA-accelerated neural network. BMC Bioinformatics, 22(1), 1–15. https://doi.org/10.1186/s12859-021-04347-6

    Article  CAS  Google Scholar 

  5. Zhou, Z., He, Z., & Jia, Y. (2020). AFPNet: A 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images. Neurocomputing, 402, 235–244. https://doi.org/10.1016/j.neucom.2020.03.097

    Article  Google Scholar 

  6. Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM, 43(4), 290–299. https://doi.org/10.1016/j.irbm.2021.06.003

    Article  Google Scholar 

  7. Berkley, A., Saueressig, C., Shukla, U., Chowdhury, I., Munoz-Gauna, A., Shehu, O., & Munbodh, R. (2023). Clinical capability of modern brain tumor segmentation models. Medical Physics, 50(8), 4943–4959. https://doi.org/10.1002/mp.16321

    Article  PubMed  Google Scholar 

  8. Song, G., Huang, Z., Zhao, Y., Zhao, X., Liu, Y., Bao, M., & Li, P. (2019). A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access, 7, 13842–13855. https://doi.org/10.1109/ACCESS.2019.2894435

    Article  Google Scholar 

  9. Sun, J., Peng, Y., Guo, Y., & Li, D. (2021). Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN. Neurocomputing, 423, 34–45. https://doi.org/10.1016/j.neucom.2020.10.031

    Article  Google Scholar 

  10. Hu, J., Gu, X., & Gu, X. (2021). Dual-pathway DenseNets with fully lateral connections for multimodal brain tumor segmentation. International Journal of Imaging Systems and Technology, 31(1), 364–378. https://doi.org/10.1002/ima.22472

    Article  Google Scholar 

  11. Farajzadeh, N., Sadeghzadeh, N., & Hashemzadeh, M. (2023). Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Systems with Applications, 224, 119963. https://doi.org/10.1016/j.eswa.2023.119963

    Article  Google Scholar 

  12. Ermiş, E., Jungo, A., Poel, R., Blatti-Moreno, M., Meier, R., Knecht, U., & Herrmann, E. (2020). Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning. Radiation Oncology, 15(1), 1–10. https://doi.org/10.1186/s13014-020-01553-z

    Article  Google Scholar 

  13. Ramesh, S., Sasikala, S., & Paramanandham, N. (2021). Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimedia Tools and Applications, 80(8), 11789–11813. https://doi.org/10.1007/s11042-020-10351-4

    Article  Google Scholar 

  14. Takács, P., Kovács, L., & Manno-Kovacs, A. (2021). A fusion of salient and convolutional features applying healthy templates for MRI brain tumor segmentation. Multimedia Tools and Applications, 80(15), 22533–22550. https://doi.org/10.1007/s11042-020-09871-w

    Article  Google Scholar 

  15. Bangerter, N. K., Morrell, G., & Grech-Sollars, M. (2019). Magnetic resonance imaging. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-813886-1.00008-5

    Book  Google Scholar 

  16. McKean-Cowdin, R., Razavi, P., & Preston-Martin, S. (2016). Brain Tumors. International Encyclopedia of Public Health (Second Edi., Vol. 1). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00039-4

  17. Mortazavi-Zadeh, S. A., Amini, A., & Soltanian-Zadeh, H. (2022). Brain tumor segmentation using U-net and U-net++ networks. In: 2022 30th International Conference on Electrical Engineering (ICEE) (pp. 841–845). https://doi.org/10.1109/ICEE55646.2022.9827132

  18. Zhang, J., Zeng, J., Qin, P., & Zhao, L. (2021). Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets. Neurocomputing, 421, 195–209. https://doi.org/10.1016/j.neucom.2020.09.016

    Article  Google Scholar 

  19. Patil, S., & Kirange, D. (2023). Ensemble of deep learning models for brain tumor detection. Procedia Computer Science, 218, 2468–2479. https://doi.org/10.1016/j.procs.2023.01.222

    Article  Google Scholar 

  20. Wang, P., & Chung, A. C. S. (2022). Relax and focus on brain tumor segmentation. Medical image analysis, 75, 102259. https://doi.org/10.1016/j.media.2021.102259

    Article  PubMed  Google Scholar 

  21. Debnath, S., & Talukdar, F. A. (2019). Brain tumour segmentation using memory based learning method. Multimedia Tools and Applications, 78(16), 23689–23706. https://doi.org/10.1007/s11042-019-7673-6

    Article  Google Scholar 

  22. Pei, L., Bakas, S., Vossough, A., Reza, S. M. S., Davatzikos, C., & Iftekharuddin, K. M. (2020). Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomedical Signal Processing and Control, 55, 101648. https://doi.org/10.1016/j.bspc.2019.101648

    Article  PubMed  Google Scholar 

  23. Kesav, N., & Jibukumar, M. G. (2022). Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN. Journal of King Saud University - Computer and Information Sciences, 34(8, Part B), 6229–6242. https://doi.org/10.1016/j.jksuci.2021.05.008

    Article  Google Scholar 

  24. Zongren, L., Silamu, W., Yuzhen, W., & Zhe, W. (2023). DenseTrans: Multimodal brain tumor segmentation using swin transformer. IEEE Access, 11(May), 42895–42908. https://doi.org/10.1109/ACCESS.2023.3272055

    Article  Google Scholar 

  25. Latif, U., Shahid, A. R., Raza, B., Ziauddin, S., & Khan, M. A. (2021). An end-to-end brain tumor segmentation system using multi-inception-UNET. International Journal of Imaging Systems and Technology, 31(4), 1803–1816. https://doi.org/10.1002/ima.22585

    Article  Google Scholar 

  26. Shafi, A. S. M., Rahman, M. B., Anwar, T., Halder, R. S., & Kays, H. M. E. (2021). Classification of brain tumors and auto-immune disease using ensemble learning. Informatics in Medicine Unlocked, 24, 100608. https://doi.org/10.1016/j.imu.2021.100608

    Article  Google Scholar 

  27. Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics, 75, 34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001

    Article  PubMed  Google Scholar 

  28. Luo, Z., Jia, Z., Yuan, Z., & Peng, J. (2021). HDC-Net: Hierarchical decoupled convolution network for brain tumor segmentation. IEEE Journal of Biomedical and Health Informatics, 25(3), 737–745. https://doi.org/10.1109/JBHI.2020.2998146

    Article  PubMed  Google Scholar 

  29. Naser, M. A., & Deen, M. J. (2020). Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Computers in Biology and Medicine, 121, 103758. https://doi.org/10.1016/j.compbiomed.2020.103758

    Article  PubMed  Google Scholar 

  30. Gurbina, M., Lascu, M., & Lascu, D. (2019). Tumor detection and classification of MRI brain image using different wavelet transforms and support vector machines. In: 2019 42nd International Conference on Telecommunications and Signal Processing, TSP 2019, 505–508. https://doi.org/10.1109/TSP.2019.8769040

  31. Obenaus, A., & Badaut, J. (2017). Chapter 3—Noninvasive imaging techniques for brain edema: from basic science to the clinic. In: Badaut, J., Plesnila, N. B. T.-B.E. (Eds.), (pp. 51–69). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-803196-4.00003-5

  32. Tiwari, A., Srivastava, S., & Pant, M. (2020). Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognition Letters, 131, 244–260. https://doi.org/10.1016/j.patrec.2019.11.020

    Article  Google Scholar 

  33. Tong, J., Zhao, Y., Zhang, P., Chen, L., & Jiang, L. (2019). MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomedical Signal Processing and Control, 47, 387–392. https://doi.org/10.1016/j.bspc.2018.06.001

    Article  Google Scholar 

  34. Xiao, Z., He, K., Liu, J., & Zhang, W. (2021). Multi-view hierarchical split network for brain tumor segmentation. Biomedical Signal Processing and Control, 69, 102897. https://doi.org/10.1016/j.bspc.2021.102897

    Article  Google Scholar 

  35. Barzegar, Z., & Jamzad, M. (2021). WLFS: Weighted label fusion learning framework for glioma tumor segmentation in brain MRI. Biomedical Signal Processing and Control, 68, 102617. https://doi.org/10.1016/j.bspc.2021.102617

    Article  Google Scholar 

  36. Biratu, E. S., Schwenker, F., Debelee, T. G., Kebede, S. R., Negera, W. G., & Molla, H. T. (2021). Enhanced region growing for brain tumor MR image segmentation. Journal of Imaging. https://doi.org/10.3390/jimaging7020022

    Article  PubMed  PubMed Central  Google Scholar 

  37. Amin, J., Sharif, M., Yasmin, M., Saba, T., & Raza, M. (2020). Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimedia Tools and Applications, 79(15), 10955–10973. https://doi.org/10.1007/s11042-019-7324-y

    Article  Google Scholar 

  38. Barzegar, Z., & Jamzad, M. (2020). A reliable ensemble-based classification framework for glioma brain tumor segmentation. Signal, Image and Video Processing, 14(8), 1591–1599. https://doi.org/10.1007/s11760-020-01699-z

    Article  Google Scholar 

  39. Nazir, M., Shakil, S., & Khurshid, K. (2021). Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Computerized Medical Imaging and Graphics, 91, 101940. https://doi.org/10.1016/j.compmedimag.2021.101940

    Article  PubMed  Google Scholar 

  40. Wadhwa, A., Bhardwaj, A., & Singh Verma, V. (2019). A review on brain tumor segmentation of MRI images. Magnetic Resonance Imaging, 61, 247–259. https://doi.org/10.1016/j.mri.2019.05.043

    Article  PubMed  Google Scholar 

  41. Irmak, E. (2021). Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(3), 1015–1036. https://doi.org/10.1007/s40998-021-00426-9

    Article  PubMed Central  Google Scholar 

  42. International Agency for research on cancer, W. (n.d.). WHO statistics. Retrieved Nov 7, 2023, from https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact-sheet.pdf

  43. International Agency for research on cancer, W. (n.d.). WHO statistics. Retrieved Nov 7, 2023, from https://gco.iarc.fr/tomorrow/en/dataviz/isotype?mode=population&group_populations=0&multiple_cancers=0&key=total&show_bar_mode_prop=0&cancers=31&populations=903&years=2040&bar_mode=stacked&multiple_populations=1&single_unit=1000

  44. Liu, Z., Tong, L., Chen, L., Jiang, Z., Zhou, F., Zhang, Q., & Zhou, H. (2023). Deep learning based brain tumor segmentation: a survey. Complex & Intelligent Systems, 9(1), 1001–1026. https://doi.org/10.1007/s40747-022-00815-5

    Article  Google Scholar 

  45. Li, H., Nan, Y., Del Ser, J., & Yang, G. (2023). Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Computing and Applications, 35(30), 22071–22085. https://doi.org/10.1007/s00521-022-08016-4

    Article  PubMed  Google Scholar 

  46. Abdel-Gawad, A. H., Said, L. A., & Radwan, A. G. (2020). Optimized edge detection technique for brain tumor detection in MR images. IEEE Access, 8, 136243–136259. https://doi.org/10.1109/ACCESS.2020.3009898

    Article  Google Scholar 

  47. Alqazzaz, S., Sun, X., Yang, X., & Nokes, L. (2019). Automated brain tumor segmentation on multi-modal MR image using SegNet. Computational Visual Media, 5(2), 209–219. https://doi.org/10.1007/s41095-019-0139-y

    Article  Google Scholar 

  48. Begum, S. S., & Lakshmi, D. R. (2020). Combining optimal wavelet statistical texture and recurrent neural network for tumour detection and classification over MRI. Multimedia Tools and Applications, 79(19), 14009–14030. https://doi.org/10.1007/s11042-020-08643-w

    Article  Google Scholar 

  49. Nehru, V., & Prabhu, V. (2023). Segmentation of brain tumor subregions with depthwise separable dense U-NET (DSDU-NET). International Journal of Imaging Systems and Technology, 33(4), 1323–1334. https://doi.org/10.1002/ima.22861

    Article  Google Scholar 

  50. Tandel, G. S., Balestrieri, A., Jujaray, T., Khanna, N. N., Saba, L., & Suri, J. S. (2020). Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in biology and medicine, 122, 103804. https://doi.org/10.1016/j.compbiomed.2020.103804

    Article  PubMed  Google Scholar 

  51. Zhu, Z., He, X., Qi, G., Li, Y., Cong, B., & Liu, Y. (2023). Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 91, 376–387. https://doi.org/10.1016/j.inffus.2022.10.022

    Article  Google Scholar 

  52. Das, S., Nayak, G. K., Saba, L., Kalra, M., Suri, J. S., & Saxena, S. (2022). An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Computers in Biology and Medicine, 143, 105273. https://doi.org/10.1016/j.compbiomed.2022.105273

    Article  PubMed  Google Scholar 

  53. Ratha, P., & Mukunthan, B. (2019). Brain tumor detection and segmentation using histogram and optimization algorithm. International Journal of Innovative Technology and Exploring Engineering, 8(10 Speical issue), 125–129. https://doi.org/10.35940/ijitee.J1023.08810S19

    Article  Google Scholar 

  54. Walsh, J., Othmani, A., Jain, M., & Dev, S. (2022). Using U-Net network for efficient brain tumor segmentation in MRI images. Healthcare Analytics, 2, 100098. https://doi.org/10.1016/j.health.2022.100098

    Article  Google Scholar 

  55. Sran, P. K., Gupta, S., & Singh, S. (2021). Integrating saliency with fuzzy thresholding for brain tumor extraction in MR images. Journal of Visual Communication and Image Representation, 74(December 2020), 102964. https://doi.org/10.1016/j.jvcir.2020.102964

    Article  Google Scholar 

  56. Khilkhal, R., & Ismael, M. (2022). brain tumor segmentation utilizing thresholding and K-means clustering. In: Al-Muthanna 2nd International Conference on Engineering Science and Technology, MICEST 2022 - Proceedings, 43–48. https://doi.org/10.1109/MICEST54286.2022.9790103

  57. Ahmad, N., & Dimililer, K. (2022). Brain tumor detection using convolutional neural network. https://doi.org/10.1109/ISMSIT56059.2022.9932741

    Article  Google Scholar 

  58. Albrecht, T., Lüthi, M., & Vetter, T. (2015). Deformable Models. https://doi.org/10.1007/978-1-4899-7488-4_88

    Article  Google Scholar 

  59. Wu, D. H., Shaffer, A. D., Thompson, D. M., Yang, Z., Magnotta, V. A., Alam, R., & Mayr, N. A. (2008). Iterative active deformational methodology for tumor delineation: Evaluation across radiation treatment stage and volume. Journal of magnetic resonance imaging : JMRI, 28(5), 1188–1194. https://doi.org/10.1002/jmri.21500

    Article  CAS  PubMed  Google Scholar 

  60. Chang, H. H., & Valentino, D. J. (2008). An electrostatic deformable model for medical image segmentation. Computerized Medical Imaging and Graphics, 32(1), 22–35. https://doi.org/10.1016/j.compmedimag.2007.08.012

    Article  PubMed  Google Scholar 

  61. Thapaliya, K., Pyun, J. Y., Park, C. S., & Kwon, G. R. (2013). Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Computerized Medical Imaging and Graphics, 37(7–8), 522–537. https://doi.org/10.1016/j.compmedimag.2013.05.003

    Article  PubMed  Google Scholar 

  62. Giraldi, G. A., Rodrigues, P. S. S., Silva, R. L. S., Apolinário, A. L., Suri, J. S. (2007). Level set formulation For dual snake models. In Deformable models. Topics in biomedical engineering. International Book Series (pp. 195–233). https://doi.org/10.1007/978-0-387-68413-0_7

  63. Lather, M., & Singh, P. (2020). Investigating brain tumor segmentation and detection techniques. Procedia Computer Science, 167, 121–130. https://doi.org/10.1016/j.procs.2020.03.189

    Article  Google Scholar 

  64. Kalaiselvi, T., Kumarashankar, P., & Sriramakrishnan, P. (2020). Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique. Journal of digital imaging, 33(2), 465–479. https://doi.org/10.1007/s10278-019-00276-2

    Article  CAS  PubMed  Google Scholar 

  65. Sheela, C. J. J., & Suganthi, G. (2020). Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm. Multimedia Tools and Applications, 79(25), 17483–17496. https://doi.org/10.1007/s11042-020-08636-9

    Article  Google Scholar 

  66. Battalapalli, D., Rao, B. V. V. S. N. P., Yogeeswari, P., Kesavadas, C., & Rajagopalan, V. (2022). An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices. BMC Medical Imaging, 22(1), 1–12. https://doi.org/10.1186/s12880-022-00812-7

    Article  Google Scholar 

  67. Bhandari, A., Koppen, J., & Agzarian, M. (2020). Convolutional neural networks for brain tumour segmentation. Insights into Imaging, 11(1), 77. https://doi.org/10.1186/s13244-020-00869-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Preim, B., & Botha, C. (2014). Image Analysis for Medical Visualization (pp. 111–175). https://doi.org/10.1016/B978-0-12-415873-3.00004-3

  69. Sharif, M., Amin, J., Raza, M., Yasmin, M., & Satapathy, S. C. (2020). An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognition Letters, 129, 150–157. https://doi.org/10.1016/j.patrec.2019.11.017

    Article  Google Scholar 

  70. Amin, J., Sharif, M., Raza, M., Saba, T., Sial, R., & Shad, S. A. (2020). Brain tumor detection: A long short-term memory (LSTM)-based learning model. Neural Computing and Applications, 32(20), 15965–15973. https://doi.org/10.1007/s00521-019-04650-7

    Article  Google Scholar 

  71. Sobhaninia, Z., Karimi, N., Khadivi, P., & Samavi, S. (2023). Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation. Biomedical Signal Processing and Control, 85, 104834. https://doi.org/10.1016/j.bspc.2023.104834

    Article  Google Scholar 

  72. Özyurt, F., Sert, E., Avci, E., & Dogantekin, E. (2019). Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 147, 106830. https://doi.org/10.1016/j.measurement.2019.07.058

    Article  Google Scholar 

  73. Hatami, T., Hamghalam, M., Reyhani-Galangashi, O., & Mirzakuchaki, S. (2019). A machine learning approach to brain tumors segmentation using adaptive random forest algorithm. In: 2019 IEEE 5th Conference on Knowledge Based Engineering and Innovation, KBEI 2019, 76–82. https://doi.org/10.1109/KBEI.2019.8735072

  74. Zaw, H. T., Maneerat, N., & Win, K. Y. (2019). Brain tumor detection based on Naïve Bayes classification. In: Proceeding - 5th International Conference on Engineering, Applied Sciences and Technology, ICEAST 2019, 1–4. https://doi.org/10.1109/ICEAST.2019.8802562

  75. Islam, M. K., Ali, M. S., Miah, M. S., Rahman, M. M., Alam, M. S., & Hossain, M. A. (2021). Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm. Machine Learning with Applications, 5, 100044. https://doi.org/10.1016/j.mlwa.2021.100044

    Article  Google Scholar 

  76. Angel Viji, K. S., & Hevin Rajesh, D. (2020). An efficient technique to segment the tumor and abnormality detection in the brain MRI images using KNN classifier. Materials Today: Proceedings, 24, 1944–1954. https://doi.org/10.1016/j.matpr.2020.03.622

    Article  Google Scholar 

  77. Srinivasa Reddy, A., & Chenna Reddy, P. (2021). MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM. Soft Computing, 25(5), 4135–4148. https://doi.org/10.1007/s00500-020-05493-4

    Article  Google Scholar 

  78. Yang, T., Song, J., & Li, L. (2019). A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI. Biocybernetics and Biomedical Engineering, 39(3), 613–623. https://doi.org/10.1016/j.bbe.2019.06.003

    Article  Google Scholar 

  79. Eluri, V. R., Ramesh, C., Dhipti, S. N., & Sujatha, D. (2019). Analysis of MRI-Based brain tumor detection using RFCM clustering and SVM classifier. In Advances in intelligent systems and computing (pp. 319–326). https://doi.org/10.1007/978-981-13-3393-4_33

  80. Yin, B., Wang, C., & Abza, F. (2020). New brain tumor classification method based on an improved version of whale optimization algorithm. Biomedical Signal Processing and Control, 56, 101728. https://doi.org/10.1016/j.bspc.2019.101728

    Article  Google Scholar 

  81. Amin, S. E., & Megeed, M. A. (2012). Brain tumor diagnosis systems based on artificial neural networks and segmentation using MRI. In 2012 8th International Conference on Informatics and Systems (INFOS) (pp. MM-119-MM–124).

  82. Nagarathinam, E., & Ponnuchamy, T. (2019). Image registration-based brain tumor detection and segmentation using ANFIS classification approach. International Journal of Imaging Systems and Technology, 29(4), 510–517. https://doi.org/10.1002/ima.22329

    Article  Google Scholar 

  83. Biswas, A., & Islam, M. S. (2021). Brain tumor types classification using K-means clustering and ANN approach. In: International Conference on Robotics, Electrical and Signal Processing Techniques, (2019), 654–658. https://doi.org/10.1109/ICREST51555.2021.9331115

  84. Faragallah, O. S., El-Hoseny, H. M., & El-sayed, H. S. (2023). Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomedical Signal Processing and Control, 84, 104712. https://doi.org/10.1016/j.bspc.2023.104712

    Article  Google Scholar 

  85. Ranjbarzadeh, R., Caputo, A., Tirkolaee, E. B., Jafarzadeh Ghoushchi, S., & Bendechache, M. (2023). Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Computers in Biology and Medicine, 152, 106405. https://doi.org/10.1016/j.compbiomed.2022.106405

    Article  PubMed  Google Scholar 

  86. Lenin Fred, A., Kumar, S. N., Padmanabhan, P., Gulyas, B., Haridhas, A. K., & Dayana, N. (2021). Chapter 8 - Multiview decision tree-based segmentation of tumors in MR brain medical images. In H. D. B. T.-H. of D. S. S. for N. D. Jude (Ed.), (pp. 125–142). Academic Press. https://doi.org/10.1016/B978-0-12-822271-3.00012-8

  87. Zhao, Y., Huang, Z., Che, H., Xie, F., Liu, M., Wang, M., & Sun, D. (2023). Segmentation of brain tissues from MRI images using multitask fuzzy clustering algorithm. Journal of Healthcare Engineering, 2023, 4387134. https://doi.org/10.1155/2023/4387134

    Article  PubMed  PubMed Central  Google Scholar 

  88. Valsalan, P., Sriramakrishnan, P., Sridhar, S., Latha, G. C. P., Priya, A., Ramkumar, S., & Rajendran, T. (2020). Knowledge based fuzzy c-means method for rapid brain tissues segmentation of magnetic resonance imaging scans with CUDA enabled GPU machine. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02132-6

    Article  Google Scholar 

  89. Saveri, P. L., Kumar, S., & Bharti, M. (2023). Segmentation and area calculation of brain tumor images using K-Means clustering and fuzzy C-Means clustering. In Lecture notes in networks and systems (pp. 643–653). https://doi.org/10.1007/978-981-99-1745-7_47

  90. Rajagopal, R. (2019). Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features. International Journal of Imaging Systems and Technology, 29(3), 353–359. https://doi.org/10.1002/ima.22331

    Article  Google Scholar 

  91. Thayumanavan, M., & Ramasamy, A. (2021). An efficient approach for brain tumor detection and segmentation in MR brain images using random forest classifier. Concurrent Engineering, 29(3), 266–274. https://doi.org/10.1177/1063293X211010542

    Article  Google Scholar 

  92. Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M., & Bendechache, M. (2021). Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Scientific Reports, 11(1), 10930. https://doi.org/10.1038/s41598-021-90428-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, Z., Tong, L., Chen, L., Zhou, F., Jiang, Z., Zhang, Q., & Zhou, H. (2021). CANet: Context aware network for brain glioma segmentation. IEEE Transactions on Medical Imaging, 40(7), 1763–1777. https://doi.org/10.1109/TMI.2021.3065918

    Article  PubMed  Google Scholar 

  94. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., & Mozaffari, S. (2021). Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Computer Methods and Programs in Biomedicine, 198, 105809. https://doi.org/10.1016/j.cmpb.2020.105809

    Article  PubMed  Google Scholar 

  95. Sert, E., Özyurt, F., & Doğantekin, A. (2019). A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Medical Hypotheses, 133, 109413. https://doi.org/10.1016/j.mehy.2019.109413

    Article  PubMed  Google Scholar 

  96. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2

    Article  Google Scholar 

  97. Rai, H. M., & Chatterjee, K. (2020). Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images. Machine Learning with Applications, 2, 100004. https://doi.org/10.1016/j.mlwa.2020.100004

  98. Ghaffari, M., Samarasinghe, G., Jameson, M., Aly, F., Holloway, L., Chlap, P., & Oliver, R. (2022). Automated post-operative brain tumour segmentation: A deep learning model based on transfer learning from pre-operative images. Magnetic Resonance Imaging, 86, 28–36. https://doi.org/10.1016/j.mri.2021.10.012

    Article  PubMed  Google Scholar 

  99. Gab Allah, M., Sarhan, A. M., & Elshennawy, M. N. (2023). Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information. Expert Systems with Applications, 213, 118833. https://doi.org/10.1016/j.eswa.2022.118833

    Article  Google Scholar 

  100. Mazumdar, I., & Mukherjee, J. (2022). Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss. Neurocomputing, 500, 243–254. https://doi.org/10.1016/j.neucom.2022.05.050

    Article  Google Scholar 

  101. Dang, K., Vo, T., Ngo, L., & Ha, H. (2022). A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO neuroscience reports, 13, 523–532. https://doi.org/10.1016/j.ibneur.2022.10.014

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kalaiselvi, T., & Padmapriya, S. T. (2021). Multimodal MRI Brain Tumor Segmentation-A ResNet-based U-Net approach. Brain Tumor MRI Image Segmentation Using Deep Learning Techniques (First Edit.). Elsevier Ltd. https://doi.org/10.1016/B978-0-323-91171-9.00013-2

    Book  Google Scholar 

  103. Li, X., Luo, G., & Wang, K. (2020). Multi-step cascaded networks for brain tumor segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11992 LNCS, 163–173. https://doi.org/10.1007/978-3-030-46640-4_16

  104. Lin, F., Wu, Q., Liu, J., Wang, D., & Kong, X. (2021). Path aggregation U-Net model for brain tumor segmentation. Multimedia Tools and Applications, 80(15), 22951–22964. https://doi.org/10.1007/s11042-020-08795-9

    Article  Google Scholar 

  105. International, B. M. R. (2023). Retracted: Automatic segmentation of MRI of brain tumor using deep convolutional network. BioMed Resarch International. https://doi.org/10.1155/2023/9803457

    Article  Google Scholar 

  106. Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine, 111, 103345. https://doi.org/10.1016/j.compbiomed.2019.103345

    Article  CAS  PubMed  Google Scholar 

  107. Salama, W. M., & Shokry, A. (2022). A novel framework for brain tumor detection based on convolutional variational generative models. Multimedia Tools and Applications, 81(12), 16441–16454. https://doi.org/10.1007/s11042-022-12362-9

    Article  Google Scholar 

  108. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 25). Curran Associates, Inc. Retrieved May 28, 2023, from https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  109. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594

  110. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90

  111. Iandola, F., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1602.07360

  112. Mehrotra, R., Ansari, M. A., Agrawal, R., & Anand, R. S. (2020). A transfer learning approach for AI-based classification of brain tumors. Machine Learning with Applications, 2, 100003. https://doi.org/10.1016/j.mlwa.2020.100003

    Article  Google Scholar 

  113. Hussain, S. S., Sachdeva, J., Ahuja, C. K., & Singh, A. (2023). Enc-Unet: A novel method for Glioma segmentation. International Journal of Imaging Systems and Technology, 33(2), 465–482. https://doi.org/10.1002/ima.22822

    Article  Google Scholar 

  114. Wacker, J., Ladeira, M., & Nascimento, J. E. V. (2021). Transfer learning for brain tumor segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol 12658 LNCS). Springer International Publishing. https://doi.org/10.1007/978-3-030-72084-1_22

    Book  Google Scholar 

  115. Cinar, N., Ozcan, A., & Kaya, M. (2022). A hybrid DenseNet121-UNet model for brain tumor segmentation from MR Images. Biomedical Signal Processing and Control, 76, 103647. https://doi.org/10.1016/j.bspc.2022.103647

    Article  Google Scholar 

  116. Wu, Y., Liao, K., Chen, J., Wang, J., Chen, D. Z., Gao, H., & Wu, J. (2023). D-former: A U-shaped dilated transformer for 3D medical image segmentation. Neural Computing and Applications, 35(2), 1931–1944. https://doi.org/10.1007/s00521-022-07859-1

    Article  Google Scholar 

  117. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2023). Swin-Unet: Unet-like pure transformer for medical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13803 LNCS). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25066-8_9

    Book  Google Scholar 

  118. Wang, P., Liu, S., & Peng, J. (2022). AST-Net: Lightweight hybrid transformer for multimodal brain tumor segmentation. In: Proceedings-International Conference on Pattern Recognition, 2022-August, 4623–4629. https://doi.org/10.1109/ICPR56361.2022.9956705

  119. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative adversarial networks. Advances in Neural Information Processing Systems. https://doi.org/10.1145/3422622

    Article  Google Scholar 

  120. Xun, S., Li, D., Zhu, H., Chen, M., Wang, J., Li, J., & Huang, P. (2022). Generative adversarial networks in medical image segmentation: A review. Computers in Biology and Medicine, 140, 105063. https://doi.org/10.1016/j.compbiomed.2021.105063

    Article  PubMed  Google Scholar 

  121. Luc, P., Couprie, C., Chintala, S., & Verbeek, J. (2016). Semantic Segmentation using Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1611.08408

  122. Conte, G. M., Weston, A. D., Vogelsang, D. C., Philbrick, K. A., & Cai, J. C. (2021). Erratum: Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model (Radiology (2021) 299:2 (313–323) DOI: 10.1148/radiol.2021203786). Radiology, 300(1), E319. https://doi.org/10.1148/radiol.2021219009

    Article  PubMed  Google Scholar 

  123. Nema, S., Dudhane, A., Murala, S., & Naidu, S. (2020). RescueNet: An unpaired GAN for brain tumor segmentation. Biomedical Signal Processing and Control, 55, 101641. https://doi.org/10.1016/j.bspc.2019.101641

    Article  Google Scholar 

  124. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 2242–2251. https://doi.org/10.1109/ICCV.2017.244

  125. Wu, X., Bi, L., Fulham, M., Feng, D. D. F., Zhou, L., & Kim, J. (2021). Unsupervised brain tumor segmentation using a symmetric-driven adversarial network. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.05.073

    Article  Google Scholar 

  126. Li, Y., Chen, Y., & Shi, Y. (2020). Brain Tumor Segmentation Using 3D Generative Adversarial Networks. International Journal of Pattern Recognition and Artificial Intelligence, 35(04), 2157002. https://doi.org/10.1142/S0218001421570020

    Article  Google Scholar 

  127. Khan, A. R., Khan, S., Harouni, M., Abbasi, R., Iqbal, S., & Mehmood, Z. (2021). Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification. Microscopy research and technique, 84(7), 1389–1399. https://doi.org/10.1002/jemt.23694

    Article  PubMed  Google Scholar 

  128. Ragupathy, B., & Karunakaran, M. (2020). A deep learning model integrating convolution neural network and multiple kernel K means clustering for segmenting brain tumor in magnetic resonance images. International Journal of Imaging Systems and Technology, 31(1), 118–127. https://doi.org/10.1002/ima.22498

    Article  Google Scholar 

  129. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., & Mozaffari, S. (2022). Enhancing level set brain tumor segmentation using fuzzy shape prior information and deep learning. International Journal of Imaging Systems and Technology. https://doi.org/10.1002/ima.22792

    Article  Google Scholar 

  130. Ilhan, A., Sekeroglu, B., & Abiyev, R. (2022). Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. International Journal of Computer Assisted Radiology and Surgery, 17(3), 589–600. https://doi.org/10.1007/s11548-022-02566-7

    Article  PubMed  Google Scholar 

  131. Li, S., Liu, J., & Song, Z. (2022). Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net. International Journal of Machine Learning and Cybernetics, 13(9), 2435–2445. https://doi.org/10.1007/s13042-022-01536-4

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hu, K., Gan, Q., Zhang, Y., Deng, S., Xiao, F., Huang, W., & Gao, X. (2019). Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access, 7, 92615–92629. https://doi.org/10.1109/ACCESS.2019.2927433

    Article  Google Scholar 

  133. Li, B., You, X., Peng, Q., Wang, J., & Yang, C. (2023). Region-related focal loss for 3D brain tumor MRI segmentation. Medical physics, 50(7), 4325–4339. https://doi.org/10.1002/mp.16244

    Article  CAS  PubMed  Google Scholar 

  134. Gao, H., Miao, Q., Ma, D., & Liu, R. (2023). Deep mutual learning for brain tumor segmentation with the fusion network. Neurocomputing, 521, 213–220. https://doi.org/10.1016/j.neucom.2022.11.038

    Article  Google Scholar 

  135. Jia, Z., Zhu, H., Zhu, J., & Ma, P. (2023). Two-Branch network for brain tumor segmentation using attention mechanism and super-resolution reconstruction. Computers in Biology and Medicine, 157, 106751. https://doi.org/10.1016/j.compbiomed.2023.106751

    Article  PubMed  Google Scholar 

  136. Behrad, F., & Saniee Abadeh, M. (2023). Evolutionary convolutional neural network for efficient brain tumor segmentation and overall survival prediction. Expert Systems with Applications, 213, 118996. https://doi.org/10.1016/j.eswa.2022.118996

    Article  Google Scholar 

  137. Zhou, T. (2023). Modality-level cross-connection and attentional feature fusion based deep neural network for multi-modal brain tumor segmentation. Biomedical Signal Processing and Control, 81, 104524. https://doi.org/10.1016/j.bspc.2022.104524

    Article  Google Scholar 

  138. Huang, L., Ruan, S., & Denœux, T. (2023). Semi-supervised multiple evidence fusion for brain tumor segmentation. Neurocomputing, 535, 40–52. https://doi.org/10.1016/j.neucom.2023.02.047

    Article  Google Scholar 

  139. Lin, C. W., & Chen, Z. (2023). U-Shiftformer: Brain tumor segmentation using a shifted attention mechanism. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2023-June, 1–5. https://doi.org/10.1109/ICASSP49357.2023.10094587

  140. Wei, C., Ren, S., Guo, K., Hu, H., & Liang, J. (2023). High-Resolution swin transformer for automatic medical image segmentation. Sensors. https://doi.org/10.3390/s23073420

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tong, J., & Wang, C. (2023). A dual tri-path CNN system for brain tumor segmentation. Biomedical Signal Processing and Control, 81, 104411. https://doi.org/10.1016/j.bspc.2022.104411

    Article  Google Scholar 

  142. Santosh Kumar, P., Sakthivel, V. P., Raju, M., & Sathya, P. D. (2023). Brain tumor segmentation of the FLAIR MRI images using novel ResUnet. Biomedical Signal Processing and Control, 82, 104586. https://doi.org/10.1016/j.bspc.2023.104586

    Article  Google Scholar 

  143. Sundaresan, V., Griffanti, L., & Jenkinson, M. (2021). brain tumour segmentation using a triplanar ensemble of U-nets on MR images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12658 LNCS, 340–353. https://doi.org/10.1007/978-3-030-72084-1_31

  144. Liang, J., Yang, C., & Zeng, L. (2022). 3D PSwinBTS: An efficient transformer-based Unet using 3D parallel shifted windows for brain tumor segmentation. Digital Signal Processing, 131, 103784. https://doi.org/10.1016/j.dsp.2022.103784

    Article  Google Scholar 

  145. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., & Li, J. (2021). TransBTS: Multimodal brain tumor segmentation using transformer. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12901 LNCS). Springer International Publishing. https://doi.org/10.1007/978-3-030-87193-2_11

    Book  Google Scholar 

  146. Nitesh, B., Madhuri, A., Manogna, B. S., Babu, K. N. J., Ishwarya, N., & Trivendra, G. M. (2022). Brain tumor segmentation using U-Net based on inception. In: Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 908–914. https://doi.org/10.1109/ICAIS53314.2022.9743122

  147. Alqazzaz, S., Sun, X., Nokes, L. D. M., Yang, H., Yang, Y., Xu, R., & Yang, X. (2022). Combined features in region of interest for brain tumor segmentation. Journal of Digital Imaging, 35(4), 938–946. https://doi.org/10.1007/s10278-022-00602-1

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sahayam, S., Nenavath, R., Jayaraman, U., & Prakash, S. (2022). Brain tumor segmentation using a hybrid multi resolution U-Net with residual dual attention and deep supervision on MR images. Biomedical Signal Processing and Control, 78, 103939. https://doi.org/10.1016/j.bspc.2022.103939

    Article  Google Scholar 

  149. Kavitha, A. R., & Palaniappan, K. (2023). Brain tumor segmentation using a deep Shuffled-YOLO network. International Journal of Imaging Systems and Technology, 33(2), 511–522. https://doi.org/10.1002/ima.22832

    Article  Google Scholar 

  150. Giammarco, M. D., Martinelli, F., Mercaldo, F., & Santone, A. (2022). High Grade Brain Cancer Segmentation by means of Deep Learning. Procedia Computer Science, 207, 1633–1640. https://doi.org/10.1016/j.procs.2022.09.220

    Article  Google Scholar 

  151. Carré, A., Deutsch, E., & Robert, C. (2022). In A. Crimi & S. Bakas (Eds.), Automatic brain tumor segmentation with a Bridge-Unet Deeply Supervised Enhanced with Downsampling Pooling Combination, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm BT - Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic (pp. 253–266). Springer International Publishing.

    Google Scholar 

  152. Huang, Z., Zhao, Y., Liu, Y., & Song, G. (2021). GCAUNet: A group cross-channel attention residual UNet for slice based brain tumor segmentation. Biomedical Signal Processing and Control, 70, 102958. https://doi.org/10.1016/j.bspc.2021.102958

    Article  Google Scholar 

  153. Zhou, X., Li, X., Hu, K., Zhang, Y., Chen, Z., & Gao, X. (2021). ERV-Net: An efficient 3D residual neural network for brain tumor segmentation. Expert Systems with Applications, 170, 114566. https://doi.org/10.1016/j.eswa.2021.114566

    Article  Google Scholar 

  154. Abdullah, M. A. M., Alkassar, S., Jebur, B., & Chambers, J. (2021). LBTS-Net: A fast and accurate CNN model for brain tumour segmentation. Healthcare technology letters, 8(2), 31–36. https://doi.org/10.1049/htl2.12005

    Article  PubMed  PubMed Central  Google Scholar 

  155. Yuvaraj, D., Noori, S. F., & Swaminathan, S. (2021). WITHDRAWN: Multi-perspective scaling convolutional neural networks for high-resolution MRI brain image segmentation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.199

    Article  Google Scholar 

  156. Ge, C., Gu, I. Y. H., Jakola, A. S., & Yang, J. (2020). Deep semi-supervised learning for brain tumor classification. BMC Medical Imaging, 20(1), 1–11. https://doi.org/10.1186/s12880-020-00485-0

    Article  Google Scholar 

Download references

Funding

The authors declare that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Yasaman Zakeri. Analyzing and providing critical literary feedback was provided by Babak Karasfi and Afsaneh Jalalian. The first draft of the manuscript was written by Yasaman Zakeri. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Babak Karasfi.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakeri, Y., Karasfi, B. & Jalalian, A. A Review of Brain Tumor Segmentation Using MRIs from 2019 to 2023 (Statistical Information, Key Achievements, and Limitations). J. Med. Biol. Eng. 44, 155–180 (2024). https://doi.org/10.1007/s40846-024-00860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00860-0

Keywords

Navigation