Skip to main content
Log in

Tissue Engineering for Sciatic Nerve Repair: Review of Methods and Challenges

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

The primary objective of this study was to offer a thorough examination of the various tissue engineering approaches employed in sciatic nerve repair. Investigating scaffold-based techniques, cell-based therapies, and bioactive molecule delivery systems shed light on the strengths, limitations, and challenges associated with each method.

Methods

A systematic literature search was conducted to identify relevant studies published up to the date of this review. Databases such as PubMed, Web of Science, and Scopus were used to gather a diverse range of articles, including original research, clinical trials, and review papers.

Results

Promising materials for neural tissue engineering include scaffolds, such as chitosan, collagen, and synthetic polymers. Moreover, cell-based therapies using neural crest stem cells, adipose-derived stem cells, and bone marrow-derived mesenchymal stem cells the potential to promote peripheral nerve regeneration. Delivery systems, such as neurotrophic factor-loaded microspheres and exosomes, along with neurotrophic factors, such as NGF, BDNF, and GDNF, have demonstrated promising results for enhancing sciatic nerve repair.

Conclusion

Stem cells hold potential for nerve tissue repair, whereas controlled release of neurotrophic factors aids axonal regeneration. Overcoming challenges such as optimal implantation timing and minimizing secondary damage is crucial and ongoing research is needed to refine scaffold properties and improve distal pathway efficacy, ultimately enhancing surgical management and functional recovery for patients with severe peripheral nerve injuries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

As a review manuscript, this article does not involve original data collection or analysis. Instead, it is a comprehensive synthesis and analysis of existing literature and information from publicly available sources. All references used in this review article are appropriately cited and acknowledged. Therefore, no specific datasets are associated with this review, and there are no additional data files to be shared.

References

  1. Aebischer, P., Salessiotis, A., & Winn, S. (1989). Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps. Journal of Neuroscience Research, 23(3), 282–289.

    Article  CAS  PubMed  Google Scholar 

  2. Angius, D., Wang, H., Spinner, R. J., Gutierrez-Cotto, Y., Yaszemski, M. J., & Windebank, A. J. (2012). A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials, 33(32), 8034–8039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baudequin, T., & Tabrizian, M. (2018). Multilineage constructs for scaffold-based tissue engineering: A review of tissue-specific challenges. Advanced Healthcare Materials, 7(3), 1700734.

    Article  CAS  Google Scholar 

  4. Boyd, J. G., & Gordon, T. (2003). Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Molecular Neurobiology, 27, 277–323.

    Article  CAS  PubMed  Google Scholar 

  5. Bucan, V., Vaslaitis, D., Peck, C.-T., Strauß, S., Vogt, P. M., & Radtke, C. (2019). Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Molecular Neurobiology, 56, 1812–1824.

    Article  CAS  PubMed  Google Scholar 

  6. Cao, J., Sun, C., Zhao, H., Xiao, Z., Chen, B., Gao, J., Zheng, T., Wu, W., Wu, S., & Wang, J. (2011). The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials, 32(16), 3939–3948.

    Article  CAS  PubMed  Google Scholar 

  7. Ding, T., Luo, Z.-J., Zheng, Y., Hu, X.-Y., & Ye, Z.-X. (2010). Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I. Injury, 41(5), 522–527.

    Article  PubMed  Google Scholar 

  8. Emamgholi, A., Rahimi, M., Kaka, G., Sadraie, S. H., & Najafi, S. (2015). Presentation of a novel model of chitosan-polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects. Iranian Journal of Basic Medical Sciences, 18(9), 887.

    PubMed  PubMed Central  Google Scholar 

  9. Frattini, F., Pereira Lopes, F. R., Almeida, F. M., Rodrigues, R. F., Boldrini, L. C., Tomaz, M. A., Baptista, A. F., Melo, P. A., & Martinez, A. M. B. (2012). Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Engineering Part A, 18(19–20), 2030–2039.

    Article  CAS  PubMed  Google Scholar 

  10. Giuffre, B. A., & Jeanmonod, R. (2018). Anatomy, sciatic nerve. Treasure Island (FL): StatPearls Publishing 2022.

  11. Goodrich, J. T., & Kliot, M. (2015). History of the peripheral and cranial nerves. Nerves and Nerve Injuries, 2015, 3–22.

    Google Scholar 

  12. Gu, X. (2015). Progress and perspectives of neural tissue engineering. Frontiers of Medicine, 9, 401–411.

    Article  PubMed  Google Scholar 

  13. Gu, X., Ding, F., & Williams, D. F. (2014). Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 35(24), 6143–6156.

    Article  CAS  PubMed  Google Scholar 

  14. Hadlock, T. A., Sheahan, T., Cheney, M. L., Vacanti, J. P., & Sundback, C. A. (2003). Biologic activity of nerve growth factor slowly released from microspheres. Journal of Reconstructive Microsurgery, 19(03), 179–184.

    Article  PubMed  Google Scholar 

  15. Ho, P.-R., Coan, G. M., Cheng, E. T., Niell, C., Tarn, D. M., Zhou, H., Sierra, D., & Terris, D. J. (1998). Repair with collagen tubules linked with brain-derived neurotrophic factor and ciliary neurotrophic factor in a rat sciatic nerve injury model. Archives of Otolaryngology-Head & Neck Surgery, 124(7), 761–766.

    Article  CAS  Google Scholar 

  16. Huang, J., Lu, L., Zhang, J., Hu, X., Zhang, Y., Liang, W., & W, Siyu., Luo, Z. (2012). Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One, 7(6), e39526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hudson, T. W., Liu, S. Y., & Schmidt, C. E. (2004). Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Engineering, 10(9–10), 1346–1358.

    Article  CAS  PubMed  Google Scholar 

  18. Ijpma, F., Van De Graaf, R., & Meek, M. (2008). The early history of tubulation in nerve repair. Journal of Hand Surgery (European Volume), 33(5), 581–586.

    Article  CAS  PubMed  Google Scholar 

  19. Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3(10), 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jahromi, M., Razavi, S., Seyedebrahimi, R., Reisi, P., & Kazemi, M. (2021). Regeneration of rat sciatic nerve using PLGA conduit containing rat ADSCs with controlled release of BDNF and gold nanoparticles. Journal of Molecular Neuroscience, 71, 746–760.

    Article  CAS  PubMed  Google Scholar 

  21. Jaing, T.-H. (2014). Umbilical cord blood: A trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplantation, 23(4–5), 493–496.

    Article  PubMed  Google Scholar 

  22. Jia, H., Wang, Y., Tong, X. J., Liu, G. B., Li, Q., Zhang, L. X., & Sun, X. H. (2012). Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse (New York, NY), 66(3), 256–269.

    Article  CAS  Google Scholar 

  23. Kaka, G., Arum, J., Sadraie, S. H., Emamgholi, A., & Mohammadi, A. (2017). Bone marrow stromal cells associated with poly l-lactic-co-glycolic acid (PLGA) nanofiber scaffold improve transected sciatic nerve regeneration. Iranian Journal of Biotechnology, 15(3), 149.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kemp, S. W., Walsh, S. K., & Midha, R. (2008). Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurological Research, 30(10), 1030–1038.

    Article  PubMed  Google Scholar 

  25. Labroo, P., Shea, J., Edwards, K., Ho, S., Davis, B., Sant, H., I, Goodwin, I., Gale, B., & Agarwal, J. (2017). Novel drug delivering conduit for peripheral nerve regeneration. Journal of Neural Engineering, 14(6), 066011.

    Article  PubMed  Google Scholar 

  26. Lackington, W. A., Kočí, Z., Alekseeva, T., Hibbitts, A. J., Kneafsey, S. L., Chen, G., & O’Brien, F. J. (2019). Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. Journal of Controlled Release, 304, 51–64.

    Article  CAS  PubMed  Google Scholar 

  27. Li, R., Li, D.-H., Zhang, H.-Y., Wang, J., Li, X.-K., & Xiao, J. (2020). Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacologica Sinica, 41(10), 1289–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, R., Li, Y., Wu, Y., Zhao, Y., Chen, H., Yuan, Y., Xu, K., Lu, Y., Wang, J., Li, X., & Jia, X. (2018). Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials, 168, 24–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y., Lv, S., Yuan, H., Ye, G., Mu, W., Fu, Y., Zhang, X., Feng, Z., & Chen, W. (2021). Peripheral nerve regeneration with 3D printed bionic scaffolds loading neural crest stem cell derived Schwann cell progenitors. Advanced Functional Materials, 31(16), 2010215.

    Article  CAS  Google Scholar 

  30. Li, Y., Ma, Z., Ren, Y., Lu, D., Li, T., Li, W., Wang, J., Ma, H., & Zhao, J. (2021). Tissue engineering strategies for peripheral nerve regeneration. Frontiers in Neurology, 12, 768267.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu, H., Zhou, Y., Chen, S., Bu, M., Xin, J., & Li, S. (2013). Current sustained delivery strategies for the design of local neurotrophic factors in treatment of neurological disorders. Asian Journal of Pharmaceutical Sciences, 8(5), 269–277.

    Article  Google Scholar 

  32. Madduri, S., Feldman, K., Tervoort, T., Papaloïzos, M., & Gander, B. (2010). Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF. Journal of Controlled Release, 143(2), 168–174.

    Article  CAS  PubMed  Google Scholar 

  33. Madduri, S., & Gander, B. (2012). Growth factor delivery systems and repair strategies for damaged peripheral nerves. Journal of Controlled Release, 161(2), 274–282.

    Article  CAS  PubMed  Google Scholar 

  34. Meena, P., Kakkar, A., Kumar, M., Khatri, N., Nagar, R. K., Singh, A., Malhotra, P., Shukla, M., Saraswat, S. K., Srivastava, S., Datt, R., & Pandey, S. (2021). Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell and Tissue Research, 383(2), 617–644.

    Article  PubMed  Google Scholar 

  35. Mohamadi, F., Ebrahimi-Barough, S., Nourani, M. R., Ahmadi, A., & Ai, J. (2018). Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 34–45.

    Article  CAS  PubMed  Google Scholar 

  36. Nagase, T., Matsumoto, D., Nagase, M., Yoshimura, K., Shigeura, T., Inoue, M., Hasegawa, M., Yamagishi, M., & Machida, M. (2007). Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report. Journal of Craniofacial Surgery, 18(1), 49–53.

    Article  PubMed  Google Scholar 

  37. Péan, J.-M., Menei, P., Morel, O., Montero-Menei, C. N., & Benoit, J.-P. (2000). Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons. Biomaterials, 21(20), 2097–2101.

    Article  PubMed  Google Scholar 

  38. Pfister, B. J., Gordon, T., Loverde, J. R., Kochar, A. S., Mackinnon, S. E., & Cullen, D. K. (2011). Biomedical engineering strategies for peripheral nerve repair: Surgical applications, state of the art, and future challenges. Critical Reviews™ in Biomedical Engineering, 39(2), 81–124.

  39. Piquilloud, G., Christen, T., Pfister, L. A., Gander, B., & Papaloïzos, M. Y. (2007). Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. European Journal of Neuroscience, 26(5), 1109–1117.

    Article  PubMed  Google Scholar 

  40. Rao, F., Wang, Y., Zhang, D., Lu, C., Cao, Z., Sui, J., Wu, M., Zhang, Y., Pi, W., Kou, Y., Wang, X., Zhang, P., & Wang, B. (2020). Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics, 10(4), 1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reid, A. J., de Luca, A. C., Faroni, A., Downes, S., Sun, M., Terenghi, G., & Kingham, P. J. (2013). Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neuroscience Letters, 544, 125–130.

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro, F. S., Bettencourt Pires, M. A., da Silva Junior, E. X., Casal, D., Casanova-Martinez, D., Pais, D., & Goyri-O’Neill, J. E. (2018). Rethinking sciatica in view of a bilateral anatomical variation of the sciatic nerve, with low origin and high division: Historical, anatomical and clinical approach. Acta Medica Portuguesa, 31(10), 568–575.

    Article  PubMed  Google Scholar 

  43. Saadai, P., Wang, A., Nout, Y. S., Downing, T. L., Lofberg, K., Beattie, M. S., Bresnahan, J. C., & Farmer, D. L. (2013). Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele. Journal of Pediatric Surgery, 48(1), 158–163.

    Article  PubMed  Google Scholar 

  44. Salehi, M., Bagher, Z., Kamrava, S. K., Ehterami, A., Alizadeh, R., Farhadi, M., Falah, M., & Komeili, A. (2019). Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. Journal of Cellular Physiology, 234(9), 15357–15368.

    Article  CAS  PubMed  Google Scholar 

  45. Sen, S. K., Lowe, J. B., III., Brenner, M. J., Hunter, D. A., & Mackinnon, S. E. (2005). Assessment of the immune response to dose of nerve allografts. Plastic and Reconstructive Surgery, 115(3), 823–830.

    Article  CAS  PubMed  Google Scholar 

  46. Siemionow, M., & Brzezicki, G. (2009). Current techniques and concepts in peripheral nerve repair. International Review of Neurobiology, 87, 141–172.

    Article  CAS  PubMed  Google Scholar 

  47. Veron, A. D., Bienboire-Frosini, C., Girard, S. D., Sadelli, K., Stamegna, J.-C., Khrestchatisky, M., Alexis, J., Pageat, P., & Mengoli, M. (2018). Syngeneic transplantation of olfactory ectomesenchymal stem cells restores learning and memory abilities in a rat model of global cerebral ischemia. Stem Cells International, 2018, 2683969.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vijayavenkataraman, S. (2020). Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia, 106, 54–69.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, C.-Y., Liu, J.-J., Fan, C.-Y., Mo, X.-M., Ruan, H.-J., & Li, F.-F. (2012). The effect of aligned core–shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. Journal of Biomaterials Science, Polymer Edition, 23(1–4), 167–184.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y., Yu, T., & Hu, F. (2022). Hypocapnia stimuli-responsive engineered exosomes delivering miR-218 facilitate sciatic nerve regeneration. Frontiers in Bioengineering and Biotechnology, 10, 825146.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu, X., Yu, H., Gao, S., Mao, H.-Q., Leong, K. W., & Wang, S. (2002). Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials, 23(17), 3765–3772.

    Article  CAS  PubMed  Google Scholar 

  52. Xue, C., Zhu, H., Tan, D., Ren, H., Gu, X., Zhao, Y., Zhang, P., Sun, Z., Yang, Y., & Gu, J. (2018). Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. Journal of Tissue Engineering and Regenerative Medicine, 12(2), e1143–e1153.

    Article  CAS  PubMed  Google Scholar 

  53. Yu, W., Zhao, W., Zhu, C., Zhang, X., Ye, D., Zhang, W., Zhou, Y., Jiang, X., & Zhang, Z. (2011). Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neuroscience, 12(1), 68. https://doi.org/10.1186/1471-2202-12-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuan, Y., Zhang, P., Yang, Y., Wang, X., & Gu, X. (2004). The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 25(18), 4273–4278.

    Article  CAS  PubMed  Google Scholar 

  55. Yurie, H., Ikeguchi, R., Aoyama, T., Kaizawa, Y., Tajino, J., Ito, A., Ohta, S., Oda, H., Takeuchi, H., Akieda, S., Tsuji, M., Nakayama, K., & Matsuda, S. (2017). The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS One, 12(2), e0171448.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, J., Zhang, Y., Jiang, Y. K., Li, J. A., Wei, W. F., Shi, M. P., Wang, Y. B., & Jia, G. L. (2022). The effect of poly (lactic-co-glycolic acid) conduit loading insulin-like growth factor 1 modified by a collagen-binding domain on peripheral nerve injury in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(9), 2100–2109.

    Article  CAS  PubMed  Google Scholar 

  57. Zurita, M., Vaquero, J., Oya, S., Bonilla, C., & Aguayo, C. (2007). Neurotrophic Schwann-cell factors induce neural differentiation of bone marrow stromal cells. NeuroReport, 18(16), 1713–1717.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are exceedingly grateful to the editor and reviewers for their constructive comments to improve the quality of this review.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by YEK, PD, and SB. The first draft of the manuscript was written by YEK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yasaman Ebrahimi-kia.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This is an observational study. The XYZ Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

This review article does not involve any direct participation of human subjects or original data collection. As such, explicit consent from participants is not applicable. All sources and references used in this review article have been properly cited and acknowledged. No personally identifiable information or sensitive data about individuals is included.

Consent to Publish

The authors of this review article grant consent for its publication in [Journal Name]. We confirm that this manuscript is an original work and has not been published elsewhere. All co-authors have reviewed and approved the final version of the article. By submitting this manuscript for publication, we agree to comply with the journal’s policies and guidelines. We understand that the published article will be available to the public and may be accessible through various platforms and databases.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi-kia, Y., Davoudi, P. & Bordbar, S. Tissue Engineering for Sciatic Nerve Repair: Review of Methods and Challenges. J. Med. Biol. Eng. 43, 663–671 (2023). https://doi.org/10.1007/s40846-023-00833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00833-9

Keywords

Navigation