Skip to main content

Silk Fibroin Based Core-Shell Nanofibers Loaded with ZnO Nanoparticles: An Ideal Candidate for Designing a Medicated Wound Dressing

Abstract

Purpose

Efficient addressing of injuries and wounds is one of the major demands of global healthcare systems. In the present study, we optimized multiple factors relevant to the coaxial electrospinning method to fabricate a novel and cost-effective core-shell nanofibrous scaffold consisting of silk fibroin as the shell and sodium alginate loaded with zinc oxide nanoparticles (ZnO-NPs) as the core.

Methods

We confirmed the successful configuration of core-shell nanofibers and even ZnO encapsulation within the core using transmission electron microscopy, energy-dispersive X-ray, and Fourier transform-infrared spectroscopy. Incorporation of ZnO-NPs into the core of electrospun nanofibers enabled sustained drug release and preserved its bioactivity.

Results

Antimicrobial evaluation of core-shell nanofibers showed their appropriate antibacterial activity against the gram-positive (Staphylococcus aureus) and the gram-negative (Escherichia coli) bacteria. However, E. coli was more resistant than S. aureus to ZnO-NPs. Additionally, the cytotoxicity and cell adhesion analyses suggested the appropriate cell attachment, viability, and proliferation on the ZnO-loaded core-shell nanofibers, which are fundamental for wound healing and skin regeneration.

Conclusion

Considering the used materials and our promising results, the synthesized nanofibrous scaffold would be efficient and affordable for mass production and clinical usage for designing a medicated wound dressing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The raw/processed data are available on reasonable request.

References

  1. Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine. https://doi.org/10.1126/SCITRANSLMED.3009337

    Article  PubMed  PubMed Central  Google Scholar 

  2. Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature Reviews Disease Primers, 8(1), 50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bowers, S., & Franco, E. (2020). Chronic wounds: Evaluation and management. American Family Physician, 101(3), 159–166.

    PubMed  Google Scholar 

  4. Blanco-Fernandez, B., Castano, O., Mateos-Timoneda, M., Engel, E., & Pérez-Amodio, S. (2021). Nanotechnology approaches in chronic wound healing. Advances in Wound care, 10(5), 234–256.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kathawala, M. H., Ng, W. L., Liu, D., Naing, M. W., Yeong, W. Y., Spiller, K. L., Van Dyke, M., & Ng, K. W. (2019). Healing of chronic wounds: An update of recent developments and future possibilities. Tissue Engineering Part B: Reviews, 25(5), 429–444.

    Article  PubMed  Google Scholar 

  6. Moradi, S., Nilforoushzadeh, M. A., Zargan, J., Nazarian, S., & Milan, P. B. (2022). A novel composite nano-scaffold with potential usage as skin dermo-epidermal grafts for chronic wound treatment. Journal of Skin and Stem Cell, 9(4):e133976. https://doi.org/10.5812/jssc-133976.

  7. Aisa, J., & Parlier, M. (2022). Local wound management: A review of modern techniques and products. Veterinary Dermatology, 33(5), 463–478.

    Article  PubMed  Google Scholar 

  8. Yudaev, P., Mezhuev, Y., & Chistyakov, E. (2022). Nanoparticle-containing wound dressing: Antimicrobial and healing effects. Gels, 8(6), 329. https://doi.org/10.3390/gels8060329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gowda, B. H. J., Mohanto, S., Singh, A., Bhunia, A., Abdelgawad, M. A., Ghosh, S., Ansari, M. J., & Pramanik, S. (2023). Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2022.101319

    Article  Google Scholar 

  10. Lei, J., Sun, L., Li, P., Zhu, C., Lin, Z., Mackey, V., Coy, D. H., & He, Q. (2019). The wound dressings and their applications in wound healing and management. Health Science Journal, 13(4), 1–8.

    CAS  Google Scholar 

  11. Thu, H. E., Zulfakar, M. H., & Ng, S. F. (2012). Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. International Journal of Pharmaceutics, 434(1–2), 375–383.

    Article  CAS  PubMed  Google Scholar 

  12. Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018). Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 199, 445–460.

    Article  CAS  PubMed  Google Scholar 

  13. Rambhia, K. J., & Ma, P. X. (2015). Controlled drug release for tissue engineering. Journal of Controlled Release: Official Journal of the Controlled Release Society, 219, 119–128. https://doi.org/10.1016/J.JCONREL.2015.08.049

    Article  CAS  PubMed  Google Scholar 

  14. Ye, K., Kuang, H., You, Z., Morsi, Y., & Mo, X. (2019). Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics. https://doi.org/10.3390/PHARMACEUTICS11040182

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luraghi, A., Peri, F., & Moroni, L. (2021). Electrospinning for drug delivery applications: A review. Journal of Controlled Release: Official Journal of the Controlled Release Society, 334, 463–484. https://doi.org/10.1016/J.JCONREL.2021.03.033

    Article  CAS  PubMed  Google Scholar 

  16. Piccirillo, G., Carvajal Berrio, D. A., Laurita, A., Pepe, A., Bochicchio, B., Schenke-Layland, K., et al. (2019). Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing. Scientific Reports. https://doi.org/10.1038/S41598-019-40079-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tanzli, E., & Ehrmann, A. (2021). Electrospun nanofibrous membranes for tissue engineering and cell growth. Appl Sci, 11, 6929.

    Article  CAS  Google Scholar 

  18. Wang, J., & Windbergs, M. (2019). Controlled dual drug release by coaxial electrospun fibers-impact of the core fluid on drug encapsulation and release. International Journal of Pharmaceutics, 556, 363–371. https://doi.org/10.1016/J.IJPHARM.2018.12.026

    Article  CAS  PubMed  Google Scholar 

  19. Han, D., & Steckl, A. J. (2019). Coaxial Electrospinning formation of complex polymer fibers and their applications. Chempluschem, 84, 1453–1497. https://doi.org/10.1002/CPLU.201900281.

    Article  CAS  PubMed  Google Scholar 

  20. Li, C., Li, Q., Ni, X., Liu, G., Cheng, W., & Han, G. (2017). Coaxial electrospinning and characterization of core-shell structured cellulose nanocrystal reinforced PMMA/PAN composite fibers. Materials (Basel). https://doi.org/10.3390/MA10060572

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park, J. K., Pham-Nguyen, O. V., & Yoo, H. S. (2020). Coaxial electrospun nanofibers with different shell contents to control cell adhesion and viability. ACS Omega, 5, 28178–28185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jenjob, R., Phakkeeree, T., & Crespy, D. (2020). Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci, 8, 2756–2770. https://doi.org/10.1039/C9BM01872G.

    Article  CAS  PubMed  Google Scholar 

  23. Deshpande, S., Sharma, S., Koul, V., & Singh, N. (2017). Core-shell nanoparticles as an efficient, sustained, and triggered drug-delivery system. ACS Omega, 2, 6455–6463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner, A. (2003). Compound core–shell polymer nanofibers by co-electrospinning. Advanced Materials, 15, 1929–1932. https://doi.org/10.1002/ADMA.200305136.

    Article  CAS  Google Scholar 

  25. Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241. https://doi.org/10.1016/J.MATTOD.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  26. Ha, S. W., Tonelli, A. E., & Hudson, S. M. (2005). Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 6, 1722–1731. https://doi.org/10.1021/BM050010Y.

    Article  CAS  PubMed  Google Scholar 

  27. Selvaraj, S., & Fathima, N. N. (2017). Fenugreek Incorporated Silk Fibroin Nanofibers - a potential antioxidant Scaffold for enhanced Wound Healing. Acs Applied Materials & Interfaces, 9, 5916–5926.

    Article  CAS  Google Scholar 

  28. Yin, J., Fang, Y., Xu, L., & Ahmed, A. (2021). High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. International Journal of Biological Macromolecules, 183, 1210–1221. https://doi.org/10.1016/J.IJBIOMAC.2021.05.026.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, J., & Tan, H. (2013). Alginate-Based biomaterials for Regenerative Medicine Applications. Mater (Basel Switzerland), 6, 1285–1309. https://doi.org/10.3390/MA6041285.

    Article  CAS  Google Scholar 

  30. Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. SN Appl Sci, 3, 1–19. https://doi.org/10.1007/S42452-020-04096-W/FIGURES/5.

    Article  Google Scholar 

  31. Sood, A., Gupta, A., & Agrawal, G. (2021). Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym Technol Appl, 2, 100067. https://doi.org/10.1016/J.CARPTA.2021.100067.

    Article  CAS  Google Scholar 

  32. Bhattarai, N., Li, Z., Edmondson, D., & Zhang, M. (2006). Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Advanced Materials, 18, 1463–1467. https://doi.org/10.1002/ADMA.200502537.

    Article  CAS  Google Scholar 

  33. Ahmad Raus, R., Wan Nawawi, W. M. F., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 16, 280–306. https://doi.org/10.1016/J.AJPS.2020.10.001.

    Article  PubMed  Google Scholar 

  34. Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I., Shearer, K. L., Alsberg, E., et al. (2011). Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers, 85, 111–119. https://doi.org/10.1016/J.CARBPOL.2011.02.002.

    Article  CAS  Google Scholar 

  35. Gönen, S., Erol Taygun, M., & Küçükbayrak, S. (2016). Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via box-behnken design. Materials Science & Engineering. C, Materials for Biological Applications, 58, 709–723. https://doi.org/10.1016/J.MSEC.2015.09.024.

    Article  Google Scholar 

  36. Stone, S. A., Gosavi, P., Athauda, T. J., & Ozer, R. R. (2013). In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Materials Letters, 112, 32–35. https://doi.org/10.1016/J.MATLET.2013.08.100.

    Article  CAS  Google Scholar 

  37. Carrasco-Torres, G., Valdés-Madrigal, M. A., Vásquez-Garzón, V. R., Baltiérrez-Hoyos, R., De la Cruz-Burelo, E. D., & Román-Doval, R. (2019). Effect of silk fibroin on cell viability in electrospun scaffolds of polyethylene oxide. Polymers, 11, 451. https://doi.org/10.3390/POLYM11030451

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan, S., et al. (2015). Burn wound healing and treatment: Review and advancements. Critical Care. https://doi.org/10.1186/S13054-015-0961-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laurenti, M., & Cauda, V. (2017). ZnO nanostructures for tissue engineering applications. Nanomaterials. https://doi.org/10.3390/NANO7110374

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin, P. H., Sermersheim, M., Li, H., Lee, P. H. U., Steinberg, S. M., & Ma, J. (2017). Zinc in wound healing modulation. Nutrients. https://doi.org/10.3390/NU10010016

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rayyif, S. M. I., Mohammed, H. B., Curuțiu, C., Bîrcă, A. C., Grumezescu, A. M., Vasile, B., Ștefan, et al. (2021). ZnO nanoparticles-modified dressings to inhibit wound pathogens. Materials (Basel Switzerland). https://doi.org/10.3390/MA14113084

    Article  PubMed  Google Scholar 

  42. Khorasani, M. T., Joorabloo, A., Adeli, H., Milan, P. B., & Amoupour, M. (2021). Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 166, 200–212. https://doi.org/10.1016/J.IJBIOMAC.2020.10.142.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Y., Lu, W., Guo, Y., Zhu, Y., & Song, Y. (2019). Electrospun gelatin fibers surface loaded ZnO particles as a potential biodegradable antibacterial wound dressing. Nanomaterials. https://doi.org/10.3390/NANO9040525

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications. https://doi.org/10.1155/2018/1062562

    Article  PubMed  PubMed Central  Google Scholar 

  45. Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., et al. (2017). Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Research, 10, 3358–3376. https://doi.org/10.1007/S12274-017-1549-8.

    Article  CAS  Google Scholar 

  46. Hadisi, Z., Farokhi, M., Bakhsheshi-Rad, H. R., Jahanshahi, M., Hasanpour, S., Pagan, E., et al. (2020). Hyaluronic acid (HA)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromolecular Bioscience, 20, 1900328. https://doi.org/10.1002/MABI.201900328.

    Article  CAS  Google Scholar 

  47. Vepari, C., & Kaplan, D. L. (2007). Silk as a Biomaterial. Progress in Polymer Science, 32, 991. https://doi.org/10.1016/J.PROGPOLYMSCI.2007.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poly(alpha-hydroxyl (2022). acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology - PubMed. Retrived October, 22, https://pubmed.ncbi.nlm.nih.gov/10397949/

  49. Zheng, T., Bott, S., & Huo, Q. (2016). Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Applied Materials & Interfaces, 8(33), 21585–21594.

    Article  CAS  Google Scholar 

  50. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett, 7, 219–242. https://doi.org/10.1007/S40820-015-0040-X/TABLES/2.

    Article  CAS  Google Scholar 

  51. Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028. https://doi.org/10.1021/LA104825U.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed Al-moalemi, H., Izwan Abd Razak, S., & Pauliena Mohd Bohari, S. (2022). Electrospun sodium alginate/poly (ethylene oxide) nanofibers forwound healing applications: Challengs and future directions. Cellul Chem Technol Cellul Chem Technol, 56, 251–270.

    Article  Google Scholar 

  53. Iacob, A. T., Drăgan, M., Ionescu, O. M., Profire, L., Ficai, A., Andronescu, E., et al. (2020). An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics, 12, 1–49. https://doi.org/10.3390/PHARMACEUTICS12100983.

    Article  Google Scholar 

  54. Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., & Park, W. H. (2009). Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 61, 1020–1032. https://doi.org/10.1016/J.ADDR.2009.07.006.

    Article  CAS  PubMed  Google Scholar 

  55. Maliszewska, I., & Czapka, T. (2022). Electrospun polymer nanofibers with antimicrobial activity. Polymers (Basel). https://doi.org/10.3390/POLYM14091661

    Article  PubMed  Google Scholar 

  56. Chen, H. W., & Lin, M. F. (2020). Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers. Polymers (Basel). https://doi.org/10.3390/POLYM12071439

    Article  PubMed  PubMed Central  Google Scholar 

  57. Poshina, D., & Otsuka, I. (2021). Electrospun polysaccharidic textiles for biomedical applications. Textiles, 1, 152–69. https://doi.org/10.3390/TEXTILES1020007

    Article  Google Scholar 

  58. Udaseen, S., Asthana, S., Raveendran, N., Kumar, K., Samal, A., & Pal, K. (2014). Optimization of process parameters for nozzle-free electrospinning of poly (vinyl alcohol) and alginate blend nano-fibrous scaffolds. Undefined, 3, 405.

    Google Scholar 

  59. Díaz, J. E., Barrero, A., Márquez, M., & Loscertales, I. G. (2006). Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Advanced Functional Materials, 16, 2110–2116. https://doi.org/10.1002/ADFM.200600204.

    Article  Google Scholar 

  60. Li, T., Ding, X., Tian, L., & Ramakrishna, S. (2017). Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications. Journal Materials Science, 52, 10661–10672. https://doi.org/10.1007/S10853-017-1245-9/FIGURES/8.

    Article  CAS  Google Scholar 

  61. Li, T., Ding, X., Tian, L., Hu, J., Yang, X., & Ramakrishna, S. (2017). The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Materials Science & Engineering. C, Materials for Biological Applications, 74, 471–477. https://doi.org/10.1016/J.MSEC.2016.12.050.

    Article  CAS  Google Scholar 

  62. Keirouz, A., Chung, M., Kwon, J., Fortunato, G., & Radacsi, N. (2020). 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology, 12, e1626. https://doi.org/10.1002/WNAN.1626.

    Article  PubMed  Google Scholar 

  63. Sundaramurthi, D., Krishnan, U. M., & Sethuraman, S. (2014). Electrospun nanofibers as scaffolds for skin tissue engineering. Undefined, 54, 348–376. https://doi.org/10.1080/15583724.2014.881374.

    Article  CAS  Google Scholar 

  64. Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K. M., Young, C. J., Wang, Y., et al. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32, 6729–6736. https://doi.org/10.1016/J.BIOMATERIALS.2011.05.065.

    Article  CAS  PubMed  Google Scholar 

  65. Amiraliyan, N., Nouri, M., & Kish, M. H. (2010). Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A 2010 524, 52, 407–412. https://doi.org/10.1134/S0965545X10040097.

    Article  Google Scholar 

  66. Yan, J., Huang, Y., Chrisey -, D. B., Jorgensen, M., Gibbons, A., Sui, K., et al. (2017). Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf Ser Mater Sci Eng, 188, 012019. https://doi.org/10.1088/1757-899X/188/1/012019.

    Article  Google Scholar 

  67. Abi Nassif, L., Rioual, S., Farah, W., Fauchon, M., Toueix, Y., Hellio, C., et al. (2020). Electrophoretic deposition of zinc alginate coatings on stainless steel for marine antifouling applications. J Environ Chem Eng, 8, 104246. https://doi.org/10.1016/J.JECE.2020.104246.

    Article  CAS  Google Scholar 

  68. Eivazzadeh-Keihan, R., Taheri-Ledari, R., Khosropour, N., Dalvand, S., Maleki, A., Mousavi-Khoshdel, S. M., et al. (2020). Fe3O4/GO@melamine-ZnO nanocomposite: A promising versatile tool for organic catalysis and electrical capacitance. Colloids Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/J.COLSURFA.2019.124335

    Article  Google Scholar 

  69. Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: A comparison. Http://McManuscriptcentralCom/Tgcl, 12, 19–24. https://doi.org/10.1080/17518253.2018.1547925.

    Article  CAS  Google Scholar 

  70. Mi, H. Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X. F., et al. (2013). Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science & Engineering. C, Materials for Biological Applications, 33, 4767–4776. https://doi.org/10.1016/J.MSEC.2013.07.037.

    Article  CAS  Google Scholar 

  71. Stewart, S. A., Domínguez-Robles, J., Donnelly, R. F., & Larrañeta, E. (2018). Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers (Basel). https://doi.org/10.3390/POLYM10121379

    Article  PubMed  Google Scholar 

  72. Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., & Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26, 2559–2566. https://doi.org/10.1016/J.BIOMATERIALS.2004.07.034.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y., Fan, S., Li, Y., Niu, C., Li, X., Guo, Y., et al. (2020). Silk fibroin/sodium alginate composite porous materials with controllable degradation. International Journal of Biological Macromolecules, 150, 1314–1322. https://doi.org/10.1016/J.IJBIOMAC.2019.10.141.

    Article  CAS  PubMed  Google Scholar 

  74. Yang, X., Wang, J., Guo, H., Liu, L., Xu, W., & Duan, G. (2020). Structural design toward functional materials by electrospinning: A review. E-Polymers, 20, 682–712.

    Article  CAS  Google Scholar 

  75. Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 190, 381–397. https://doi.org/10.1016/J.JCONREL.2014.05.059.

    Article  CAS  PubMed  Google Scholar 

  76. Sood, A., Granick, M. S., & Tomaselli, N. L. (2014). Wound dressings and comparative effectiveness Data. Adv Wound Care, 3, 511. https://doi.org/10.1089/WOUND.2012.0401.

    Article  Google Scholar 

  77. Kaushik, M., Niranjan, R., Thangam, R., Madhan, B., Pandiyarasan, V., Ramachandran, C., et al. (2019). Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science, 479, 1169–1177. https://doi.org/10.1016/J.APSUSC.2019.02.189.

    Article  CAS  Google Scholar 

  78. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environment Microbiology, 77, 2325–2331. https://doi.org/10.1128/AEM.02149-10.

    Article  CAS  Google Scholar 

  79. Moradi, S., Nilforoushzadeh, M. A., Zargan, J., Nazarian, S., & Milan, P. B. (2022). A novel composite nano-scaffold with potential usage as skin dermo-epidermal grafts for chronic wound treatment. Journal of Skin and Stem Cell. https://doi.org/10.5812/jssc-133976

    Article  Google Scholar 

  80. Bakhsheshi-Rad, H. R., Hamzah, E., Ismail, A. F., Aziz, M., Kasiri-Asgarani, M., Ghayour, H., et al. (2017). In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy. Materials and Corrosion, 68, 1228–1236. https://doi.org/10.1002/MACO.201709597.

    Article  CAS  Google Scholar 

  81. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings—A review. BioMedicine, 5, 24–28. https://doi.org/10.7603/S40681-015-0022-9

    Article  Google Scholar 

  82. Feng, P., Wei, P., Shuai, C., & Peng, S. (2014). Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0087755

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wilhelmi, V., Fischer, U., Weighardt, H., Schulze-Osthoff, K., Nickel, C., Stahlmecke, B., et al. (2013). Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0065704

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ivarsson, M., Mcwhirter, A., Borg, T. K., & Rubin, K. (1998). Type I collagen synthesis in cultured human fibroblasts: Regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biology, 16, 409–425. https://doi.org/10.1016/S0945-053X(98)90014-2.

    Article  CAS  PubMed  Google Scholar 

  85. Lansdown, A. B. G., Mirastschijski, U., Stubbs, N., Scanlon, E., & Ågren, M. S. (2007). Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 15, 2–16. https://doi.org/10.1111/J.1524-475X.2006.00179.X

    Article  Google Scholar 

  86. Patil, P. P., Reagan, M. R., & Bohara, R. A. (2020). Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 164, 4613–4627. https://doi.org/10.1016/J.IJBIOMAC.2020.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Tehran University of Medical Sciences (TUMS). Research Council and lab contributions from the Skin and Stem cell Research Center of TUMS.

Funding

This work was partially supported by Skin and Stem cell Research Center, Tehran University of Medical Sciences (Grant No. 97-03-150-39275).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, analysis, and manuscript writing were performed by S.M. Sh.N, P.BM, and MA.N supervised the project and edited the manuscript.

Corresponding authors

Correspondence to Shahram Nazarian or Peiman Brouki Milan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This is an observational study. The Tehran University of Medical Sciences Research Ethics Committee has confirmed that no ethical approval is required.

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Nazarian, S., Milan, P.B. et al. Silk Fibroin Based Core-Shell Nanofibers Loaded with ZnO Nanoparticles: An Ideal Candidate for Designing a Medicated Wound Dressing. J. Med. Biol. Eng. (2023). https://doi.org/10.1007/s40846-023-00821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-023-00821-z

Keywords