Abstract
Purpose
Efficient addressing of injuries and wounds is one of the major demands of global healthcare systems. In the present study, we optimized multiple factors relevant to the coaxial electrospinning method to fabricate a novel and cost-effective core-shell nanofibrous scaffold consisting of silk fibroin as the shell and sodium alginate loaded with zinc oxide nanoparticles (ZnO-NPs) as the core.
Methods
We confirmed the successful configuration of core-shell nanofibers and even ZnO encapsulation within the core using transmission electron microscopy, energy-dispersive X-ray, and Fourier transform-infrared spectroscopy. Incorporation of ZnO-NPs into the core of electrospun nanofibers enabled sustained drug release and preserved its bioactivity.
Results
Antimicrobial evaluation of core-shell nanofibers showed their appropriate antibacterial activity against the gram-positive (Staphylococcus aureus) and the gram-negative (Escherichia coli) bacteria. However, E. coli was more resistant than S. aureus to ZnO-NPs. Additionally, the cytotoxicity and cell adhesion analyses suggested the appropriate cell attachment, viability, and proliferation on the ZnO-loaded core-shell nanofibers, which are fundamental for wound healing and skin regeneration.
Conclusion
Considering the used materials and our promising results, the synthesized nanofibrous scaffold would be efficient and affordable for mass production and clinical usage for designing a medicated wound dressing.
This is a preview of subscription content, access via your institution.










Data Availability
The raw/processed data are available on reasonable request.
References
Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine. https://doi.org/10.1126/SCITRANSLMED.3009337
Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature Reviews Disease Primers, 8(1), 50.
Bowers, S., & Franco, E. (2020). Chronic wounds: Evaluation and management. American Family Physician, 101(3), 159–166.
Blanco-Fernandez, B., Castano, O., Mateos-Timoneda, M., Engel, E., & Pérez-Amodio, S. (2021). Nanotechnology approaches in chronic wound healing. Advances in Wound care, 10(5), 234–256.
Kathawala, M. H., Ng, W. L., Liu, D., Naing, M. W., Yeong, W. Y., Spiller, K. L., Van Dyke, M., & Ng, K. W. (2019). Healing of chronic wounds: An update of recent developments and future possibilities. Tissue Engineering Part B: Reviews, 25(5), 429–444.
Moradi, S., Nilforoushzadeh, M. A., Zargan, J., Nazarian, S., & Milan, P. B. (2022). A novel composite nano-scaffold with potential usage as skin dermo-epidermal grafts for chronic wound treatment. Journal of Skin and Stem Cell, 9(4):e133976. https://doi.org/10.5812/jssc-133976.
Aisa, J., & Parlier, M. (2022). Local wound management: A review of modern techniques and products. Veterinary Dermatology, 33(5), 463–478.
Yudaev, P., Mezhuev, Y., & Chistyakov, E. (2022). Nanoparticle-containing wound dressing: Antimicrobial and healing effects. Gels, 8(6), 329. https://doi.org/10.3390/gels8060329.
Gowda, B. H. J., Mohanto, S., Singh, A., Bhunia, A., Abdelgawad, M. A., Ghosh, S., Ansari, M. J., & Pramanik, S. (2023). Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2022.101319
Lei, J., Sun, L., Li, P., Zhu, C., Lin, Z., Mackey, V., Coy, D. H., & He, Q. (2019). The wound dressings and their applications in wound healing and management. Health Science Journal, 13(4), 1–8.
Thu, H. E., Zulfakar, M. H., & Ng, S. F. (2012). Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. International Journal of Pharmaceutics, 434(1–2), 375–383.
Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018). Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 199, 445–460.
Rambhia, K. J., & Ma, P. X. (2015). Controlled drug release for tissue engineering. Journal of Controlled Release: Official Journal of the Controlled Release Society, 219, 119–128. https://doi.org/10.1016/J.JCONREL.2015.08.049
Ye, K., Kuang, H., You, Z., Morsi, Y., & Mo, X. (2019). Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics. https://doi.org/10.3390/PHARMACEUTICS11040182
Luraghi, A., Peri, F., & Moroni, L. (2021). Electrospinning for drug delivery applications: A review. Journal of Controlled Release: Official Journal of the Controlled Release Society, 334, 463–484. https://doi.org/10.1016/J.JCONREL.2021.03.033
Piccirillo, G., Carvajal Berrio, D. A., Laurita, A., Pepe, A., Bochicchio, B., Schenke-Layland, K., et al. (2019). Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing. Scientific Reports. https://doi.org/10.1038/S41598-019-40079-7
Tanzli, E., & Ehrmann, A. (2021). Electrospun nanofibrous membranes for tissue engineering and cell growth. Appl Sci, 11, 6929.
Wang, J., & Windbergs, M. (2019). Controlled dual drug release by coaxial electrospun fibers-impact of the core fluid on drug encapsulation and release. International Journal of Pharmaceutics, 556, 363–371. https://doi.org/10.1016/J.IJPHARM.2018.12.026
Han, D., & Steckl, A. J. (2019). Coaxial Electrospinning formation of complex polymer fibers and their applications. Chempluschem, 84, 1453–1497. https://doi.org/10.1002/CPLU.201900281.
Li, C., Li, Q., Ni, X., Liu, G., Cheng, W., & Han, G. (2017). Coaxial electrospinning and characterization of core-shell structured cellulose nanocrystal reinforced PMMA/PAN composite fibers. Materials (Basel). https://doi.org/10.3390/MA10060572
Park, J. K., Pham-Nguyen, O. V., & Yoo, H. S. (2020). Coaxial electrospun nanofibers with different shell contents to control cell adhesion and viability. ACS Omega, 5, 28178–28185.
Jenjob, R., Phakkeeree, T., & Crespy, D. (2020). Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci, 8, 2756–2770. https://doi.org/10.1039/C9BM01872G.
Deshpande, S., Sharma, S., Koul, V., & Singh, N. (2017). Core-shell nanoparticles as an efficient, sustained, and triggered drug-delivery system. ACS Omega, 2, 6455–6463.
Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner, A. (2003). Compound core–shell polymer nanofibers by co-electrospinning. Advanced Materials, 15, 1929–1932. https://doi.org/10.1002/ADMA.200305136.
Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241. https://doi.org/10.1016/J.MATTOD.2013.06.005.
Ha, S. W., Tonelli, A. E., & Hudson, S. M. (2005). Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 6, 1722–1731. https://doi.org/10.1021/BM050010Y.
Selvaraj, S., & Fathima, N. N. (2017). Fenugreek Incorporated Silk Fibroin Nanofibers - a potential antioxidant Scaffold for enhanced Wound Healing. Acs Applied Materials & Interfaces, 9, 5916–5926.
Yin, J., Fang, Y., Xu, L., & Ahmed, A. (2021). High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. International Journal of Biological Macromolecules, 183, 1210–1221. https://doi.org/10.1016/J.IJBIOMAC.2021.05.026.
Sun, J., & Tan, H. (2013). Alginate-Based biomaterials for Regenerative Medicine Applications. Mater (Basel Switzerland), 6, 1285–1309. https://doi.org/10.3390/MA6041285.
Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. SN Appl Sci, 3, 1–19. https://doi.org/10.1007/S42452-020-04096-W/FIGURES/5.
Sood, A., Gupta, A., & Agrawal, G. (2021). Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym Technol Appl, 2, 100067. https://doi.org/10.1016/J.CARPTA.2021.100067.
Bhattarai, N., Li, Z., Edmondson, D., & Zhang, M. (2006). Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Advanced Materials, 18, 1463–1467. https://doi.org/10.1002/ADMA.200502537.
Ahmad Raus, R., Wan Nawawi, W. M. F., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 16, 280–306. https://doi.org/10.1016/J.AJPS.2020.10.001.
Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I., Shearer, K. L., Alsberg, E., et al. (2011). Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers, 85, 111–119. https://doi.org/10.1016/J.CARBPOL.2011.02.002.
Gönen, S., Erol Taygun, M., & Küçükbayrak, S. (2016). Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via box-behnken design. Materials Science & Engineering. C, Materials for Biological Applications, 58, 709–723. https://doi.org/10.1016/J.MSEC.2015.09.024.
Stone, S. A., Gosavi, P., Athauda, T. J., & Ozer, R. R. (2013). In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Materials Letters, 112, 32–35. https://doi.org/10.1016/J.MATLET.2013.08.100.
Carrasco-Torres, G., Valdés-Madrigal, M. A., Vásquez-Garzón, V. R., Baltiérrez-Hoyos, R., De la Cruz-Burelo, E. D., & Román-Doval, R. (2019). Effect of silk fibroin on cell viability in electrospun scaffolds of polyethylene oxide. Polymers, 11, 451. https://doi.org/10.3390/POLYM11030451
Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan, S., et al. (2015). Burn wound healing and treatment: Review and advancements. Critical Care. https://doi.org/10.1186/S13054-015-0961-2
Laurenti, M., & Cauda, V. (2017). ZnO nanostructures for tissue engineering applications. Nanomaterials. https://doi.org/10.3390/NANO7110374
Lin, P. H., Sermersheim, M., Li, H., Lee, P. H. U., Steinberg, S. M., & Ma, J. (2017). Zinc in wound healing modulation. Nutrients. https://doi.org/10.3390/NU10010016
Rayyif, S. M. I., Mohammed, H. B., Curuțiu, C., Bîrcă, A. C., Grumezescu, A. M., Vasile, B., Ștefan, et al. (2021). ZnO nanoparticles-modified dressings to inhibit wound pathogens. Materials (Basel Switzerland). https://doi.org/10.3390/MA14113084
Khorasani, M. T., Joorabloo, A., Adeli, H., Milan, P. B., & Amoupour, M. (2021). Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 166, 200–212. https://doi.org/10.1016/J.IJBIOMAC.2020.10.142.
Chen, Y., Lu, W., Guo, Y., Zhu, Y., & Song, Y. (2019). Electrospun gelatin fibers surface loaded ZnO particles as a potential biodegradable antibacterial wound dressing. Nanomaterials. https://doi.org/10.3390/NANO9040525
Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications. https://doi.org/10.1155/2018/1062562
Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., et al. (2017). Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Research, 10, 3358–3376. https://doi.org/10.1007/S12274-017-1549-8.
Hadisi, Z., Farokhi, M., Bakhsheshi-Rad, H. R., Jahanshahi, M., Hasanpour, S., Pagan, E., et al. (2020). Hyaluronic acid (HA)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromolecular Bioscience, 20, 1900328. https://doi.org/10.1002/MABI.201900328.
Vepari, C., & Kaplan, D. L. (2007). Silk as a Biomaterial. Progress in Polymer Science, 32, 991. https://doi.org/10.1016/J.PROGPOLYMSCI.2007.05.013.
Poly(alpha-hydroxyl (2022). acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology - PubMed. Retrived October, 22, https://pubmed.ncbi.nlm.nih.gov/10397949/
Zheng, T., Bott, S., & Huo, Q. (2016). Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Applied Materials & Interfaces, 8(33), 21585–21594.
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett, 7, 219–242. https://doi.org/10.1007/S40820-015-0040-X/TABLES/2.
Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028. https://doi.org/10.1021/LA104825U.
Ahmed Al-moalemi, H., Izwan Abd Razak, S., & Pauliena Mohd Bohari, S. (2022). Electrospun sodium alginate/poly (ethylene oxide) nanofibers forwound healing applications: Challengs and future directions. Cellul Chem Technol Cellul Chem Technol, 56, 251–270.
Iacob, A. T., Drăgan, M., Ionescu, O. M., Profire, L., Ficai, A., Andronescu, E., et al. (2020). An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics, 12, 1–49. https://doi.org/10.3390/PHARMACEUTICS12100983.
Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., & Park, W. H. (2009). Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 61, 1020–1032. https://doi.org/10.1016/J.ADDR.2009.07.006.
Maliszewska, I., & Czapka, T. (2022). Electrospun polymer nanofibers with antimicrobial activity. Polymers (Basel). https://doi.org/10.3390/POLYM14091661
Chen, H. W., & Lin, M. F. (2020). Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers. Polymers (Basel). https://doi.org/10.3390/POLYM12071439
Poshina, D., & Otsuka, I. (2021). Electrospun polysaccharidic textiles for biomedical applications. Textiles, 1, 152–69. https://doi.org/10.3390/TEXTILES1020007
Udaseen, S., Asthana, S., Raveendran, N., Kumar, K., Samal, A., & Pal, K. (2014). Optimization of process parameters for nozzle-free electrospinning of poly (vinyl alcohol) and alginate blend nano-fibrous scaffolds. Undefined, 3, 405.
DÃaz, J. E., Barrero, A., Márquez, M., & Loscertales, I. G. (2006). Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Advanced Functional Materials, 16, 2110–2116. https://doi.org/10.1002/ADFM.200600204.
Li, T., Ding, X., Tian, L., & Ramakrishna, S. (2017). Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications. Journal Materials Science, 52, 10661–10672. https://doi.org/10.1007/S10853-017-1245-9/FIGURES/8.
Li, T., Ding, X., Tian, L., Hu, J., Yang, X., & Ramakrishna, S. (2017). The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Materials Science & Engineering. C, Materials for Biological Applications, 74, 471–477. https://doi.org/10.1016/J.MSEC.2016.12.050.
Keirouz, A., Chung, M., Kwon, J., Fortunato, G., & Radacsi, N. (2020). 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology, 12, e1626. https://doi.org/10.1002/WNAN.1626.
Sundaramurthi, D., Krishnan, U. M., & Sethuraman, S. (2014). Electrospun nanofibers as scaffolds for skin tissue engineering. Undefined, 54, 348–376. https://doi.org/10.1080/15583724.2014.881374.
Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K. M., Young, C. J., Wang, Y., et al. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32, 6729–6736. https://doi.org/10.1016/J.BIOMATERIALS.2011.05.065.
Amiraliyan, N., Nouri, M., & Kish, M. H. (2010). Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A 2010 524, 52, 407–412. https://doi.org/10.1134/S0965545X10040097.
Yan, J., Huang, Y., Chrisey -, D. B., Jorgensen, M., Gibbons, A., Sui, K., et al. (2017). Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf Ser Mater Sci Eng, 188, 012019. https://doi.org/10.1088/1757-899X/188/1/012019.
Abi Nassif, L., Rioual, S., Farah, W., Fauchon, M., Toueix, Y., Hellio, C., et al. (2020). Electrophoretic deposition of zinc alginate coatings on stainless steel for marine antifouling applications. J Environ Chem Eng, 8, 104246. https://doi.org/10.1016/J.JECE.2020.104246.
Eivazzadeh-Keihan, R., Taheri-Ledari, R., Khosropour, N., Dalvand, S., Maleki, A., Mousavi-Khoshdel, S. M., et al. (2020). Fe3O4/GO@melamine-ZnO nanocomposite: A promising versatile tool for organic catalysis and electrical capacitance. Colloids Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/J.COLSURFA.2019.124335
Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: A comparison. Http://McManuscriptcentralCom/Tgcl, 12, 19–24. https://doi.org/10.1080/17518253.2018.1547925.
Mi, H. Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X. F., et al. (2013). Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science & Engineering. C, Materials for Biological Applications, 33, 4767–4776. https://doi.org/10.1016/J.MSEC.2013.07.037.
Stewart, S. A., DomÃnguez-Robles, J., Donnelly, R. F., & Larrañeta, E. (2018). Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers (Basel). https://doi.org/10.3390/POLYM10121379
Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., & Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26, 2559–2566. https://doi.org/10.1016/J.BIOMATERIALS.2004.07.034.
Wang, Y., Fan, S., Li, Y., Niu, C., Li, X., Guo, Y., et al. (2020). Silk fibroin/sodium alginate composite porous materials with controllable degradation. International Journal of Biological Macromolecules, 150, 1314–1322. https://doi.org/10.1016/J.IJBIOMAC.2019.10.141.
Yang, X., Wang, J., Guo, H., Liu, L., Xu, W., & Duan, G. (2020). Structural design toward functional materials by electrospinning: A review. E-Polymers, 20, 682–712.
Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 190, 381–397. https://doi.org/10.1016/J.JCONREL.2014.05.059.
Sood, A., Granick, M. S., & Tomaselli, N. L. (2014). Wound dressings and comparative effectiveness Data. Adv Wound Care, 3, 511. https://doi.org/10.1089/WOUND.2012.0401.
Kaushik, M., Niranjan, R., Thangam, R., Madhan, B., Pandiyarasan, V., Ramachandran, C., et al. (2019). Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science, 479, 1169–1177. https://doi.org/10.1016/J.APSUSC.2019.02.189.
Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environment Microbiology, 77, 2325–2331. https://doi.org/10.1128/AEM.02149-10.
Moradi, S., Nilforoushzadeh, M. A., Zargan, J., Nazarian, S., & Milan, P. B. (2022). A novel composite nano-scaffold with potential usage as skin dermo-epidermal grafts for chronic wound treatment. Journal of Skin and Stem Cell. https://doi.org/10.5812/jssc-133976
Bakhsheshi-Rad, H. R., Hamzah, E., Ismail, A. F., Aziz, M., Kasiri-Asgarani, M., Ghayour, H., et al. (2017). In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy. Materials and Corrosion, 68, 1228–1236. https://doi.org/10.1002/MACO.201709597.
Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings—A review. BioMedicine, 5, 24–28. https://doi.org/10.7603/S40681-015-0022-9
Feng, P., Wei, P., Shuai, C., & Peng, S. (2014). Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0087755
Wilhelmi, V., Fischer, U., Weighardt, H., Schulze-Osthoff, K., Nickel, C., Stahlmecke, B., et al. (2013). Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0065704
Ivarsson, M., Mcwhirter, A., Borg, T. K., & Rubin, K. (1998). Type I collagen synthesis in cultured human fibroblasts: Regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biology, 16, 409–425. https://doi.org/10.1016/S0945-053X(98)90014-2.
Lansdown, A. B. G., Mirastschijski, U., Stubbs, N., Scanlon, E., & Ågren, M. S. (2007). Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 15, 2–16. https://doi.org/10.1111/J.1524-475X.2006.00179.X
Patil, P. P., Reagan, M. R., & Bohara, R. A. (2020). Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 164, 4613–4627. https://doi.org/10.1016/J.IJBIOMAC.2020.08.041.
Acknowledgements
The authors are grateful for the support from the Tehran University of Medical Sciences (TUMS). Research Council and lab contributions from the Skin and Stem cell Research Center of TUMS.
Funding
This work was partially supported by Skin and Stem cell Research Center, Tehran University of Medical Sciences (Grant No. 97-03-150-39275).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, analysis, and manuscript writing were performed by S.M. Sh.N, P.BM, and MA.N supervised the project and edited the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Ethics Approval
This is an observational study. The Tehran University of Medical Sciences Research Ethics Committee has confirmed that no ethical approval is required.
Consent for Publication
All authors read and approved the final manuscript.
Additional information
Publisher’s Note
Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Moradi, S., Nazarian, S., Milan, P.B. et al. Silk Fibroin Based Core-Shell Nanofibers Loaded with ZnO Nanoparticles: An Ideal Candidate for Designing a Medicated Wound Dressing. J. Med. Biol. Eng. (2023). https://doi.org/10.1007/s40846-023-00821-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40846-023-00821-z