Skip to main content

Advertisement

Log in

P53 in Vascular Remodeling: The Potential for Targeting in Atherosclerosis

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

At first, p53 was believed to be present primarily in malignant cells. In fact, p53 turned out to play a major role in vascular remodeling associated with transplantation surgery or intraluminal intervention. The purpose of this review was to describe the multiple processes which include p53 activation and to analyze its impact on cellular proliferation and migration, as well as its involvement in such conditions as pulmonary arterial hypertension, subarachnoid hemorrhage, ischemia and others.

Methods

To select the initial sources for our review, we searched the PubMed database with the keywords “p53 mechanisms”, “p53 atherosclerosis”, “p53 cardiovascular”, etc. To maintain the relevance, we selected only papers published in 2018 and later.

Results

Overall, p53 is proved to have a strong relationship with the whole cardiovascular system. Available data also indicate a connection of p53 to the atherosclerosis initiation and progression. P53 might become a promising therapeutic target for treatment of acute and chronic cardiovascular diseases due to its ability to influence various vascular mechanisms.

Conclusion

Modifying the synthesis of this protein and the expression of the corresponding genes to create models, cellular and animal, that allow us to better understand about complex nature of the pathogenesis of atherosclerosis seems to be promising. Also, p53 can be considered as a possible target for the development of therapeutic strategies. The same is true both for the protein itself and for all participants in the pathway of its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not aplicable.

References

  1. Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes & Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889.PMID:21779514;PMCID:PMC3135636

    Article  CAS  Google Scholar 

  2. Hernández Borrero, L. J., & El-Deiry, W. S. (2021). Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochimica et Biophysica Acta Reviews Cancer, 1876(1), 188556. https://doi.org/10.1016/j.bbcan.2021.188556

    Article  CAS  Google Scholar 

  3. Gabani, M., Castañeda, D., Nguyen, Q. M., Choi, S. K., Chen, C., Mapara, A., Kassan, A., Gonzalez, A. A., Khataei, T., Ait-Aissa, K., & Kassan, M. (2021). Association of cardiotoxicity with doxorubicin and trastuzumab: A double-edged sword in chemotherapy. Cureus, 13(9), e18194. https://doi.org/10.7759/cureus.18194

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mercer, J., Figg, N., Stoneman, V., Braganza, D., & Bennett, M. R. (2005). Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circulation Research, 96(6), 667–674. https://doi.org/10.1161/01.RES.0000161069.15577.ca

    Article  CAS  PubMed  Google Scholar 

  5. Chan, G. H., Chan, E., Kwok, C. T., Leung, G. P., Lee, S. M., & Seto, S. W. (2022). The role of p53 in the alternation of vascular functions. Frontiers in Pharmacology, 13, 981152. https://doi.org/10.3389/fphar.2022.981152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, X., Feng, H., Dai, C., Lu, W., Zhang, J., Guo, X., Yin, Q., Wang, J., Cui, X., & Jiang, F. (2021). Therapeutic efficacy of the novel selective RNA polymerase I inhibitor CX-5461 on pulmonary arterial hypertension and associated vascular remodelling. British Journal of Pharmacology, 178(7), 1605–1619. https://doi.org/10.1111/bph.15385

    Article  CAS  PubMed  Google Scholar 

  7. Milutinović, A., Šuput, D., & Zorc-Pleskovič, R. (2020). Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosnian Journal of Basic Medical Sciences, 20(1), 21–30. https://doi.org/10.17305/bjbms.2019.4320.PMID:31465719;PMCID:PMC7029210

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brozovich, F. V., Nicholson, C. J., Degen, C. V., Gao, Y. Z., Aggarwal, M., & Morgan, K. G. (2016). Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacological Reviews, 68(2), 476–532. https://doi.org/10.1124/pr.115.010652.PMID:27037223;PMCID:PMC4819215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sandoo, A., van Zanten, J. J., Metsios, G. S., Carroll, D., & Kitas, G. D. (2010). The endothelium and its role in regulating vascular tone. Open Cardiovascular Medicine Journal, 23(4), 302–312. https://doi.org/10.2174/1874192401004010302.PMID:21339899;PMCID:PMC3040999

    Article  Google Scholar 

  10. Su, J. B. (2015). Vascular endothelial dysfunction and pharmacological treatment. World Journal of Cardiology, 7(11), 719–741. https://doi.org/10.4330/wjc.v7.i11.719.PMID:26635921;PMCID:PMC4660468

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song, P., & Zou, M. H. (2014). Redox regulation of endothelial cell fate. Cellular and Molecular Life Sciences, 71(17), 3219–3239. https://doi.org/10.1007/s00018-014-1598-z

    Article  CAS  PubMed  Google Scholar 

  12. Gao, Q., Zhu, X., Chen, J., Mao, C., Zhang, L., & Xu, Z. (2016). Upregulation of P53 promoted G1 arrest and apoptosis in human umbilical cord vein endothelial cells from preeclampsia. Journal of Hypertension, 34(7), 1380–1388. https://doi.org/10.1097/HJH.0000000000000944.PMID:27115339;PMCID:PMC5649442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, K. H., & Park, W. J. (2015). Endothelial dysfunction: Clinical implications in cardiovascular disease and therapeutic approaches. Journal of Korean Medical Science, 30(9), 1213–1225. https://doi.org/10.3346/jkms.2015.30.9.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Labuschagne, C. F., Zani, F., & Vousden, K. H. (2018). Control of metabolism by p53—Cancer and beyond. Biochimica et Biophysica Acta Reviews Cancer, 1870(1), 32–42. https://doi.org/10.1016/j.bbcan.2018.06.001

    Article  CAS  Google Scholar 

  15. Harraz, O. F., & Jensen, L. J. (2021). Vascular calcium signalling and ageing. The Journal of Physiology, 599(24), 5361–5377. https://doi.org/10.1113/JP280950

    Article  CAS  PubMed  Google Scholar 

  16. Wiley, C. D., & Campisi, J. (2021). The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nature Metabolism., 3(10), 1290–1301. https://doi.org/10.1038/s42255-021-00483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., & Nattel, S. (2022). The role of cellular senescence in cardiac disease: Basic biology and clinical relevance. Nature Reviews Cardiology, 19(4), 250–264. https://doi.org/10.1038/s41569-021-00624-2

    Article  PubMed  Google Scholar 

  18. Walia, V., Ding, M., Kumar, S., Nie, D., Premkumar, L. S., & Elble, R. C. (2009). hCLCA2 Is a p53-inducible inhibitor of breast cancer cell proliferation. Cancer research, 69(16), 6624–6632. https://doi.org/10.1158/0008-5472.CAN-08-4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tajadura, V., Hansen, M. H., Smith, J., Charles, H., Rickman, M., Farrell-Dillon, K., Claro, V., Warboys, C., & Ferro, A. (2020). β-Catenin promotes endothelial survival by regulating eNOS activity and flow-dependent anti-apoptotic gene expression. Cell Death & Disease, 11(6), 493. https://doi.org/10.1038/s41419-020-2687-6.PMID:32606304;PMCID:PMC7326989

    Article  CAS  Google Scholar 

  20. Yokoyama, M., Shimizu, I., Nagasawa, A., Yoshida, Y., Katsuumi, G., Wakasugi, T., Hayashi, Y., Ikegami, R., Suda, M., Ota, Y., Okada, S., Fruttiger, M., Kobayashi, Y., Tsuchida, M., Kubota, Y., & Minamino, T. (2019). p53 Clays a crucial role in endothelial dysfunction associated with hyperglycemia and ischemia. Journal of molecular and cellular cardiology, 129, 105–117. https://doi.org/10.1016/j.yjmcc.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Klisic, A., Radoman Vujacic, I., Munjas, J., Ninic, A., & Kotur-Stevuljevic, J. (2022). Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus—A review article. Archives of Medical Science, 18(4), 870–880. https://doi.org/10.5114/aoms/146796.PMID:35832702;PMCID:PMC9266798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, H., Wu, J., Zhou, S., Huang, W., Li, Y., Zhang, H., Wang, J., & Jia, Y. (2018). SRT2104 Attenuates diabetes-induced aortic endothelial dysfunction via inhibition of P53. The Journal of endocrinology, 237(1), 1–14. https://doi.org/10.1530/JOE-17-0672

    Article  CAS  PubMed  Google Scholar 

  23. Tobal, R., Potjewijd, J., van Empel, V. P. M., Ysermans, R., Schurgers, L. J., Reutelingsperger, C. P., Damoiseaux, J. G. M. C., & van Paassen, P. (2021). Vascular remodeling in pulmonary arterial hypertension: The potential involvement of innate and adaptive immunity. Frontiers Medical (Lausanne)., 8, 806899. https://doi.org/10.3389/fmed.2021.806899

    Article  PubMed Central  Google Scholar 

  24. Malik TF, Tivakaran VS. Percutaneous Transluminal Coronary Angioplasty. [Updated 2022 Sep 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535417/

  25. Cao, G., Xuan, X., Hu, J., Zhang, R., Jin, H., & Dong, H. (2022). How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Communication and Signaling: CCS, 20(1), 180. https://doi.org/10.1186/s12964-022-00993-2.PMID:36411459;PMCID:PMC9677683

    Article  PubMed  PubMed Central  Google Scholar 

  26. Htay, T., & Liu, M. W. (2005). Drug-eluting stent: A review and update. Vasc Health Risk Manag., 1(4), 263–276. https://doi.org/10.2147/vhrm.2005.1.4.263.PMID:17315599;PMCID:PMC1993957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, X., Li, S., Gan, X., Qiu, C., Chen, K., Pei, H., Wang, Q., Li, D., Li, X., Yang, D., & Yang, Y. (2019). Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway. Journal of Hypertension, 37(11), 2256–2268. https://doi.org/10.1097/HJH.0000000000002159.PMID:31136458;PMCID:PMC6784764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, J. H., Zhou, Y. F., Hong, C. D., Chen, A. Q., Luo, Y., Mao, L., Xia, Y. P., He, Q. W., Jin, H. J., Huang, M., Li, Y. N., & Hu, B. (2019). Semaphorin-3A protects against neointimal hyperplasia after vascular injury. eBioMedicine, 39, 95–108. https://doi.org/10.1016/j.ebiom.2018.12.023

    Article  PubMed  Google Scholar 

  29. Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130(17), 1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schleiss, M. R. (2011). Congenital cytomegalovirus infection: Molecular mechanisms mediating viral pathogenesis. Infectious Disorders: Drug Targets, 11(5), 449–465. https://doi.org/10.2174/187152611797636721.PMID:21827434;PMCID:PMC3869401

    Article  CAS  PubMed  Google Scholar 

  31. Hashimoto, T., Ichiki, T., Ikeda, J., Narabayashi, E., Matsuura, H., Miyazaki, R., Inanaga, K., Takeda, K., & Sunagawa, K. (2011). Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation. Cardiovascular Research, 91(4), 711–719. https://doi.org/10.1093/cvr/cvr108

    Article  CAS  PubMed  Google Scholar 

  32. Cai, C., Wu, Y., Yang, L., Xiang, Y., Zhu, N., Zhao, H., Hu, W., Lv, L., & Zeng, C. (2021). Sodium selenite attenuates balloon injury-induced and monocrotaline-induced vascular remodeling in rats. Frontiers Pharmacology, 12, 618493. https://doi.org/10.3389/fphar.2021.618493

    Article  CAS  Google Scholar 

  33. Sultana, R., Abdel-Fatah, T., Perry, C., Moseley, P., Albarakti, N., Mohan, V., Seedhouse, C., Chan, S., & Madhusudan, S. (2013). Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS ONE, 8(2), e57098. https://doi.org/10.1371/journal.pone.0057098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, S., Xuan, J., Brajanovski, N., Tancock, M. R. C., Madhamshettiwar, P. B., Simpson, K. J., Ellis, S., Kang, J., Cullinane, C., Sheppard, K. E., Hannan, K. M., Hannan, R. D., Sanij, E., Pearson, R. B., & Chan, K. T. (2021). The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. British Journal of Cancer, 124(3), 616–627. https://doi.org/10.1038/s41416-020-01158-z

    Article  CAS  PubMed  Google Scholar 

  35. Bachar BJ, Manna B. Coronary Artery Bypass Graft. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507836/

  36. Dishart, K. L., Work, L. M., Denby, L., & Baker, A. H. (2003). Gene therapy for cardiovascular disease. Journal of Biomedicine & Biotechnology, 2003(2), 138–148. https://doi.org/10.1155/S1110724303209086.PMID:12721517;PMCID:PMC323957

    Article  Google Scholar 

  37. Cao, R. Y., Eves, R., Jia, L., Funk, C. D., Jia, Z., & Mak, A. S. (2017). Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS ONE, 12(3), e0175061. https://doi.org/10.1371/journal.pone.0175061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, F., Nair, V., & Chih, S. (2020). Cardiac allograft vasculopathy: Insights on pathogenesis and therapy. Clinical transplantation, 34(3), e13794. https://doi.org/10.1111/ctr.13794

    Article  PubMed  Google Scholar 

  39. Costello, J. P., Mohanakumar, T., & Nath, D. S. (2013). Mechanisms of chronic cardiac allograft rejection. Texas Heart Institute Journal, 40(4), 395–399.

    PubMed  PubMed Central  Google Scholar 

  40. Polinski, N. K., Gombash, S. E., Manfredsson, F. P., Lipton, J. W., Kemp, C. J., Cole-Strauss, A., Kanaan, N. M., Steece-Collier, K., Kuhn, N. C., Wohlgenant, S. L., & Sortwell, C. E. (2015). Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiology of Aging, 36(2), 1110–1120. https://doi.org/10.1016/j.neurobiolaging.2014.07.047

    Article  CAS  PubMed  Google Scholar 

  41. Izawa, A., Ji, S., Takahashi, W., Amano, J., & Isobe, M. (2001). Tranilast inhibits cardiac allograft vasculopathy in association with p21(Waf1/Cip1) expression on neointimal cells in murine cardiac transplantation model. Arteriosclerosis, thrombosis, and vascular biology, 21(7), 1172–1178. https://doi.org/10.1161/hq0701.092119

    Article  CAS  PubMed  Google Scholar 

  42. Prins, K. W., & Thenappan, T. (2016). World health organization group I pulmonary hypertension: Epidemiology and pathophysiology. Cardiology Clinics, 34(3), 363–374. https://doi.org/10.1016/j.ccl.2016.04.001.PMID:27443134;PMCID:PMC4959804

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jonigk, D., Golpon, H., Bockmeyer, C. L., Maegel, L., Hoeper, M. M., Gottlieb, J., Nickel, N., Hussein, K., Maus, U., Lehmann, U., Janciauskiene, S., Welte, T., Haverich, A., Rische, J., Kreipe, H., & Laenger, F. (2011). Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. The American Journal of Pathology, 179(1), 167–179. https://doi.org/10.1016/j.ajpath.2011.03.040

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koudstaal, T., Boomars, K. A., & Kool, M. (2020). Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: An immunological perspective. Journal of Clinical Medicine, 9(2), 561. https://doi.org/10.3390/jcm9020561.PMID:32092864;PMCID:PMC7074374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wakasugi, T., Shimizu, I., Yoshida, Y., Hayashi, Y., Ikegami, R., Suda, M., Katsuumi, G., Nakao, M., Hoyano, M., Kashimura, T., Nakamura, K., Ito, H., Nojiri, T., Soga, T., & Minamino, T. (2019). Role of smooth muscle cell p53 in pulmonary arterial hypertension. PLoS ONE, 14(2), e0212889. https://doi.org/10.1371/journal.pone.0212889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pullamsetti, S. S., Savai, R., Seeger, W., & Goncharova, E. A. (2017). translational advances in the field of pulmonary hypertension. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs. American Journal of Respiratory and Critical Care Medicine, 195(4), 425–437. https://doi.org/10.1164/rccm.201606-1226PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bourgeois, A., Bonnet, S., Breuils-Bonnet, S., Habbout, K., Paradis, R., Tremblay, E., Lampron, M. C., Orcholski, M. E., Potus, F., Bertero, T., Peterlini, T., Chan, S. Y., Norris, K. A., Paulin, R., Provencher, S., & Boucherat, O. (2019). Inhibition of CHK 1 (Checkpoint Kinase 1) elicits therapeutic effects in pulmonary arterial hypertension. Arteriosclerosis Thrombosis and Vascular Biolology, 39(8), 1667–1681. https://doi.org/10.1161/ATVBAHA.119.312537

    Article  CAS  Google Scholar 

  48. Jones, K. R., Choi, U., Gao, J. L., Thompson, R. D., Rodman, L. E., Malech, H. L., & Kang, E. M. (2017). A novel method for screening adenosine receptor specific agonists for use in adenosine drug development. Scientific reports, 7, 44816. https://doi.org/10.1038/srep44816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maarman, G., Lecour, S., Butrous, G., Thienemann, F., & Sliwa, K. (2013). A comprehensive review: The evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ., 3(4), 739–756. https://doi.org/10.1086/674770.PMID:25006392;PMCID:PMC4070827

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, Z., Yang, K., Zheng, Q., Zhang, C., Tang, H., Babicheva, A., Jiang, Q., Li, M., Chen, Y., Carr, S. G., Wu, K., Zhang, Q., Balistrieri, A., Wang, C., Song, S., Ayon, R. J., Desai, A. A., Black, S. M., Garcia, J. G. N., … Wang, J. (2019). Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. American Journal of Physiology Lung Cellular and Molecular Physiology, 316(1), L216–L228. https://doi.org/10.1152/ajplung.00538.2017

    Article  CAS  PubMed  Google Scholar 

  51. Mouraret, N., Marcos, E., Abid, S., Gary-Bobo, G., Saker, M., Houssaini, A., Dubois-Rande, J. L., Boyer, L., Boczkowski, J., Derumeaux, G., Amsellem, V., & Adnot, S. (2013). Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation, 127(16), 1664–1676. https://doi.org/10.1161/CIRCULATIONAHA.113.002434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lloyd, J. T., & Glass, K. C. (2018). Biological function and histone recognition of family IV bromodomain-containing proteins. Journal of Cellular Physiology, 233(3), 1877–1886. https://doi.org/10.1002/jcp.26010

    Article  CAS  PubMed  Google Scholar 

  53. Dai, Z., & Zhao, Y. Y. (2019). BET in Pulmonary arterial hypertension: Exploration of BET inhibitors to reverse vascular remodeling. American Journal of Respiratory and Critical Care Medicine, 200(7), 806–808. https://doi.org/10.1164/rccm.201904-0877ED.PMID:31112388;PMCID:PMC6812451

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meloche, J., Potus, F., Vaillancourt, M., Bourgeois, A., Johnson, I., Deschamps, L., Chabot, S., Ruffenach, G., Henry, S., Breuils-Bonnet, S., Tremblay, È., Nadeau, V., Lambert, C., Paradis, R., Provencher, S., & Bonnet, S. (2015). Bromodomain-containing protein 4: The epigenetic origin of pulmonary arterial hypertension. Circulation research, 117(6), 525–535. https://doi.org/10.1161/CIRCRESAHA.115.307004

    Article  CAS  PubMed  Google Scholar 

  55. Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Linton MRF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343489/

  57. Ooi, B. K., Goh, B. H., & Yap, W. H. (2017). Oxidative stress in cardiovascular diseases: Involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation. International Journal of Molecular Sciences, 18(11), 2336. https://doi.org/10.3390/ijms18112336.PMID:29113088;PMCID:PMC5713305

    Article  PubMed  PubMed Central  Google Scholar 

  58. Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829–837. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  PubMed  Google Scholar 

  59. Gui, Y., Zheng, H., & Cao, R. Y. (2022). Foam cells in atherosclerosis: Novel insights into its origins, consequences, and molecular mechanisms. Frontiers Cardiovascular Medicine, 9, 845942. https://doi.org/10.3389/fcvm.2022.845942

    Article  CAS  Google Scholar 

  60. Bäck, M., Yurdagul, A., Jr., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nature Reviews Cardiology, 16(7), 389–406. https://doi.org/10.1038/s41569-019-0169-2.PMID:30846875;PMCID:PMC6727648

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kenzelmann Broz, D., & Attardi, L. D. (2010). In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis, 31(8), 1311–1318. https://doi.org/10.1093/carcin/bgp331

    Article  CAS  PubMed  Google Scholar 

  62. Chen, J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine, 6(3), a026104. https://doi.org/10.1101/cshperspect.a026104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lozano, G. (2010). Mouse models of p53 functions. Cold Spring Harbor Perspective in Biology, 2(4), a001115. https://doi.org/10.1101/cshperspect.a001115

    Article  CAS  Google Scholar 

  64. Tran, D., Bergholz, J., Zhang, H., He, H., Wang, Y., Zhang, Y., Li, Q., Kirkland, J. L., & Xiao, Z. X. (2014). Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell, 13(4), 669–678. https://doi.org/10.1111/acel.12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Werner, H., Sarfstein, R., LeRoith, D., & Bruchim, I. (2016). Insulin-like growth factor 1 signaling axis meets p53 genome protection pathways. Frontiers in Oncology, 23(6), 159. https://doi.org/10.3389/fonc.2016.00159.PMID:27446805;PMCID:PMC4917523

    Article  Google Scholar 

  66. Kim, M., Son, W., Kang, D. H., & Park, J. (2021). Cerebral vasospasm with delayed ischemic neurologic deficit after unruptured aneurysm surgery : Report of two cases and review of the literature. Journal of Korean Neurosurgen Society, 64(4), 665–670. https://doi.org/10.3340/jkns.2020.0206

    Article  Google Scholar 

Download references

Funding

This research was funded by Russian Science Foundation, grant number 22-25-00480. Russian Science Foundation, 22-25-00480, Vasily N. Sukhorukov

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, AVP; writing—review and editing, VNS, AVG, EBZ, MAP, ANO

Corresponding authors

Correspondence to Anastasia V. Poznyak or Alexander N. Orekhov.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

Not aplicable.

Consent to Participate

Not aplicable.

Consent for Publish

Not aplicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poznyak, A.V., Zhigmitova, E.B., Sukhorukov, V.N. et al. P53 in Vascular Remodeling: The Potential for Targeting in Atherosclerosis. J. Med. Biol. Eng. 43, 205–215 (2023). https://doi.org/10.1007/s40846-023-00797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00797-w

Keywords

Navigation