Skip to main content
Log in

An Explainable Machine-Learning Model to Analyze the Effects of a PCSK9 Inhibitor on Thrombolysis in STEMI Patients

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Thrombolysis, a timely and simple reperfusion therapy, does not have a sufficiently high success rate in patients with ST-segment elevation acute myocardial infarction (STEMI). This study aimed to explore the effect of a PCSK9 inhibitor on thrombolysis success rate in patients by applying a machine learning (ML) algorithm.

Methods

In total, 531 patients with STEMI treated with thrombolytic therapy were enrolled. Four commonly used ML algorithms were selected to develop models to predict the risk of thrombolysis failure in patients with STEMI. Cluster-based undersampling (CUS) has been proposed to alleviate the effects of imbalanced data. A comprehensive evaluation revealed the optimal model for further interpretation, and the effect of the PCSK9 inhibitor on thrombolysis in patients with STEMI was analyzed by combining the SHapley Additive exPlanations (SHAP) value.

Results

CUS significantly improved model performance. The accuracy, specificity, G-mean, and area under the receiver operating characteristic curve (AUC) were greater than those of the models trained using random undersampling by 10.63%, 14.32%, 2.66%, and 2.06%, respectively. The optimal model achieved 74.81% accuracy, 73.75% sensitivity, 74.95% specificity, 73.77% G-mean, and 80.99% AUC. The feature importance of the PCSK9 inhibitor was ranked as 7/27 with a negative SHAP value, indicating that it can reduce the risk of thrombolysis failure.

Conclusion

The proposed CUS can effectively alleviate class imbalances in medical data. The combination with a PCSK9 inhibitor has the potential to reduce the risk of thrombolysis failure in patients with STEMI, which has significant clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

data availability

The data that supports the findings of this study are available upon reasonable request from the corresponding author. The data are not publicly available due to privacy concerns.

References

  1. Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Stroke Statistics, S. (2021). Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation, 143(8), 254-e743. https://doi.org/10.1161/CIR.0000000000000950

    Article  Google Scholar 

  2. O’Gara, P. T., Kushner, F. G., Ascheim, D. D., Casey, D. E., Jr., Chung, M. K., de Lemos, J. A., American College of Cardiology Foundation, American Heart Association Task Force on Practice, G. (2013). 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 127(4), e362-425. https://doi.org/10.1161/CIR.0b013e3182742cf6

    Article  PubMed  Google Scholar 

  3. Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., Group, E. S. C. S. D. (2018). ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 39(2), 119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  PubMed  Google Scholar 

  4. Fazel, R., Joseph, T. I., Sankardas, M. A., Pinto, D. S., Yeh, R. W., Kumbhani, D. J., & Nallamothu, B. K. (2020). Comparison of reperfusion strategies for ST-segment-elevation myocardial infarction: A multivariate network meta-analysis. Journal of American Heart Association, 9(12), e015186. https://doi.org/10.1161/JAHA.119.015186

    Article  CAS  Google Scholar 

  5. Gurewich, V. (2016). Thrombolysis: A critical first-line therapy with an unfulfilled potential. American Journal of Medicine, 129(6), 573–575. https://doi.org/10.1016/j.amjmed.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  6. Mentias, A., & Girotra, S. (2020). Pharmaco-invasive strategy: The answer to improving ST-elevation-myocardial infarction care. Journal of American Heart Association, 9(12), e016831. https://doi.org/10.1161/JAHA.120.016831

    Article  Google Scholar 

  7. Urban, D., Poss, J., Bohm, M., & Laufs, U. (2013). Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. Journal of the American College of Cardiology, 62(16), 1401–1408. https://doi.org/10.1016/j.jacc.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  8. Glerup, S., Schulz, R., Laufs, U., & Schluter, K. D. (2017). Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Research in Cardiology, 112(3), 32. https://doi.org/10.1007/s00395-017-0619-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabatine, M. S., Giugliano, R. P., Keech, A., Honarpour, N., Wang, H., Liu, T., & Pedersen, T. R. (2016). Rationale and design of the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk trial. American Heart Journal, 173, 94–101. https://doi.org/10.1016/j.ahj.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  10. Barale, C., Bonomo, K., Frascaroli, C., Morotti, A., Guerrasio, A., Cavalot, F., & Russo, I. (2020). Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutrition, Metabolism, and Cardiovascular Diseases, 30(2), 282–291. https://doi.org/10.1016/j.numecd.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  11. Saha, D., & S, S., Sergeeva, E. G., Ionova, Z. I., Gorbach, A. V. (2015). Tissue factor and atherothrombosis. Current Pharmaceutical Design, 21(9), 1152–1157. https://doi.org/10.2174/1381612820666141013154946

    Article  CAS  PubMed  Google Scholar 

  12. Bandyopadhyay, D., Ashish, K., Hajra, A., Qureshi, A., & Ghosh, R. K. (2018). Cardiovascular outcomes of PCSK9 inhibitors: With special emphasis on its effect beyond LDL-cholesterol lowering. Journal of Lipids, 2018, 3179201. https://doi.org/10.1155/2018/3179201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peczek, P., Lesniewski, M., Mazurek, T., Szarpak, L., Filipiak, K. J., & Gasecka, A. (2021). Antiplatelet effects of PCSK9 inhibitors in primary hypercholesterolemia. Life (Basel). https://doi.org/10.3390/life11060466

    Article  PubMed  Google Scholar 

  14. Qi, Z., Hu, L., Zhang, J., Yang, W., Liu, X., Jia, D., & Ge, J. (2021). PCSK9 (Proprotein convertase subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation, 143(1), 45–61. https://doi.org/10.1161/CIRCULATIONAHA.120.046290

    Article  CAS  PubMed  Google Scholar 

  15. Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical Care Medicine, 46(4), 547–553. https://doi.org/10.1097/CCM.0000000000002936

    Article  PubMed  Google Scholar 

  16. Mortazavi, B. J., Downing, N. S., Bucholz, E. M., Dharmarajan, K., Manhapra, A., Li, S. X., & Krumholz, H. M. (2016). Analysis of machine learning techniques for heart failure readmissions. Circulation. Cardiovascular Quality and Outcomes, 9(6), 629–640. https://doi.org/10.1161/CIRCOUTCOMES.116.003039

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., Zhang, Q., Zhao, G., Liu, G., & Liu, Z. (2020). Deep learning-based method of diagnosing hyperlipidemia and providing diagnostic markers automatically. Diabetes, Metabolic Syndrome and Obesity, 13, 679–691. https://doi.org/10.2147/DMSO.S242585

    Article  PubMed  PubMed Central  Google Scholar 

  19. Commandeur, F., Slomka, P. J., Goeller, M., Chen, X., Cadet, S., Razipour, A., & Dey, D. (2020). Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: A prospective study. Cardiovascular Research, 116(14), 2216–2225. https://doi.org/10.1093/cvr/cvz321

    Article  CAS  PubMed  Google Scholar 

  20. Angraal, S., Mortazavi, B. J., Gupta, A., Khera, R., Ahmad, T., Desai, N. R., & Krumholz, H. M. (2020). Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction. JACC Heart Failure, 8(1), 12–21. https://doi.org/10.1016/j.jchf.2019.06.013

    Article  PubMed  Google Scholar 

  21. Zhang, Z., Ho, K. M., & Hong, Y. (2019). Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Critical Care, 23(1), 112. https://doi.org/10.1186/s13054-019-2411-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Majhi, M. K., Pradhan, B. K., Sarkar, P., Sivaraman, J., & Pal, K. (2022). Can statistical and entropy-based features extracted from ECG signals efficiently differentiate the cannabis-consuming women population from the non-consumer? Medical Hypotheses, 167, 110952.

    Article  CAS  Google Scholar 

  23. Stojadinovic, M., Milicevic, B., & Jankovic, S. (2023). Improved prediction of significant prostate cancer following repeated prostate biopsy by the random forest classifier. Journal of Medical and Biological Engineering, 43(1), 83–92.

    Article  Google Scholar 

  24. Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., & Lee, S. I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, K., Tian, J., Zheng, C., Yang, H., Ren, J., Liu, Y., & Zhang, Y. (2021). Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Computers in Biology and Medicine, 137, 4813. https://doi.org/10.1016/j.compbiomed.2021.104813

    Article  Google Scholar 

  26. Athanasiou, M., Sfrintzeri, K., Zarkogianni, K., Thanopoulou, A. C., & Nikita, K. S. (2020). An explainable XGBoost–based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE).

  27. Lin, W.-C., Tsai, C.-F., Hu, Y.-H., & Jhang, J.-S. (2017). Clustering-based undersampling in class-imbalanced data. Information Sciences, 409, 17–26.

    Article  Google Scholar 

  28. Zhao, J., Zhao, P., Li, C., & Hou, Y. (2021). Optimized machine learning models to predict in-hospital mortality for patients with ST-segment elevation myocardial infarction. Therapeutics and Clinical Risk Management, 17, 951–961. https://doi.org/10.2147/TCRM.S321799

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

    Article  Google Scholar 

  30. Mehran, R., Rao, S. V., Bhatt, D. L., Gibson, C. M., Caixeta, A., Eikelboom, J., & White, H. (2011). Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation, 123(23), 2736–2747. https://doi.org/10.1161/CIRCULATIONAHA.110.009449

    Article  PubMed  Google Scholar 

  31. Tokodi, M., Schwertner, W. R., Kovacs, A., Toser, Z., Staub, L., Sarkany, A., & Kosztin, A. (2020). Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: The SEMMELWEIS-CRT score. European Heart Journal, 41(18), 1747–1756. https://doi.org/10.1093/eurheartj/ehz902

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, K., Tian, J., Zheng, C., Yang, H., Ren, J., Li, C., & Zhang, Y. (2021). Improving risk identification of adverse outcomes in chronic heart failure using SMOTE+ ENN and machine learning. Risk Management and Healthcare Policy, 14, 2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3), 189–228.

    Article  Google Scholar 

  34. Claridge-Chang, A., & Assam, P. N. (2016). Estimation statistics should replace significance testing. Nature Methods, 13(2), 108–109.

    Article  CAS  PubMed  Google Scholar 

  35. Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135, 109144.

    Article  Google Scholar 

  36. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.

  37. Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., & Kim, J. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature biomedical engineering, 2(10), 749–760.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41(3), 647–665.

    Article  Google Scholar 

  39. Xia, W., & Feng, X.-Y. (2018). Fragmented QRS (fQRS) complex predicts adverse cardiac events of ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention and thrombolysis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 4634.

    Article  CAS  PubMed  Google Scholar 

  40. Bagai, A., Dangas, G. D., Stone, G. W., & Granger, C. B. (2014). Reperfusion strategies in acute coronary syndromes. Circulation Research, 114(12), 1918–1928.

    Article  CAS  PubMed  Google Scholar 

  41. Boden, W. E., Eagle, K., & Granger, C. B. (2007). Reperfusion strategies in acute ST-segment elevation myocardial infarction: A comprehensive review of contemporary management options. Journal of the American College of Cardiology, 50(10), 917–929. https://doi.org/10.1016/j.jacc.2007.04.084

    Article  PubMed  Google Scholar 

  42. D’Ascenzo, F., De Filippo, O., Gallone, G., Mittone, G., Deriu, M. A., Iannaccone, M., group, P. s. (2021). Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): A modelling study of pooled datasets. Lancet, 397(10270), 199–207. https://doi.org/10.1016/S0140-6736(20)32519-8

    Article  PubMed  Google Scholar 

  43. Yamashita, T., Wakata, Y., Nakaguma, H., Nohara, Y., Hato, S., Kawamura, S., & Soejima, H. (2022). Machine learning for classification of postoperative patient status using standardized medical data. Computer Methods in Programs and Biomedicine, 214, 6583. https://doi.org/10.1016/j.cmpb.2021.106583

    Article  Google Scholar 

  44. Senturk, Z. K. (2020). Early diagnosis of Parkinson’s disease using machine learning algorithms. Medical Hypotheses, 138, 109603.

    Article  Google Scholar 

  45. Gao, Y., Qiu, Y., Wu, J., Diao, W., Zhang, H., Wang, S., & Jiang, L. (2018). Acute-phase plasma PCSK9 levels and recurrent cardiovascular events in a Chinese acute myocardial infarction cohort. Cardiology, 141(2), 88–97. https://doi.org/10.1159/000493785

    Article  CAS  PubMed  Google Scholar 

  46. Li, H., Wei, Y., Yang, Z., Zhang, S., Xu, X., Shuai, M., & Li, J. (2020). Safety, tolerability, pharmacokinetics, and pharmacodynamics of alirocumab in healthy Chinese subjects: A randomized, double-blind, placebo-controlled, ascending single-dose study. American Journal of Cardiovascular Drugs, 20(5), 489–503. https://doi.org/10.1007/s40256-020-00394-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kosmas, C. E., Skavdis, A., Sourlas, A., Papakonstantinou, E. J., Pena Genao, E., Echavarria Uceta, R., & Guzman, E. (2020). Safety and Tolerability of PCSK9 Inhibitors: Current Insights. Clin Pharmacol, 12, 191–202. https://doi.org/10.2147/CPAA.S288831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Tianjin Key Research Program of Traditional Chinese Medicine (2022001), the Tianjin Research Innovation Project for Postgraduate Students (2022BKY105), National Natural Science Foundation of China (62206197), and Applied and Basic Research by Multi-input Foundation of Tianjin (21JCYBJC00820). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this study. Material preparation, data collection, and analyses were performed by PZ, JZ, and YH. The first draft of the manuscript was written by PZ, and all authors commented on the following versions of the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Pengyu Zhao or Jia Zhao.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the medical ethics committee of Tianjin Chest Hospital (approval number: 2020KY-007-01).

Consent to Participate

This was a retrospective study that used previous clinical treatment records, without using biological samples, without direct contact with patients, and without involving the personal privacy of patients. Therefore, this study was exempted from informed consent by the Medical Ethics Committee of Tianjin Chest Hospital.

Consent to Publish

This study does not contain any individual personal data in any form.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Zhou, J., Liu, C. et al. An Explainable Machine-Learning Model to Analyze the Effects of a PCSK9 Inhibitor on Thrombolysis in STEMI Patients. J. Med. Biol. Eng. 43, 339–349 (2023). https://doi.org/10.1007/s40846-023-00796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00796-x

Keywords

Navigation