Skip to main content

Advertisement

Log in

Three-Dimensional Finite Element Stress Analysis of Different Implant-Supported Bridges in the Maxillary Incisal Regions

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Using a three-dimensional finite element method (3D-FEM), we compared the stress patterns and displacement on the implants, bone tissues, and prostheses in end-to-end implant-supported and cantilever implant bridges in the maxillary incisal region.

Methods

Using a 3D-FEM, a model was constructed of the implant by rotating and adding threads according to the ITI Dental Implant System aesthetic requirements. The implant, prosthesis, and maxillary bone were assembled to form three different implant-supported bridges at different implant sites. Next, a 100-N load was applied at 0°, 30°, and 60°, and the stress values, displacements, and stress distribution were compared.

Results

The stress distribution and displacement of the three models were similar in all three angles. In all three models, under axial loading, the stresses were majorly concentrated in the cortical bone around the implant neck and the apex; whereas the rest remaining stress was small and evenly distributed. Under oblique loading, the stresses were majorly concentrated in the cortical bone around the implant neck, and the stress value in the neck was greater than that in the apex. The cantilever implant bridge model produces I-type leverage action and its stress (implant 30°: 83.5 ± 6.9 Mpa or 133.8 ± 10.3 MPa vs. 65.1 ± 8.5Mpa; 60°: 115.1 ± 2.6 MPa or 141.0 ± 9.7 MPa vs. 98.1 ± 6.8 MPa. Cortical bone 30°: 48.6 ± 9.5 Mpa or 67.8 ± 5.9 MPa vs. 41.6 ± 9.8Mpa and 60°: 67.3 ± 6.3 MPa or 68.9 ± 10.2 MPa vs. 61.7 ± 6.4 MPa) and displacement (30°: 132.0 ± 13.2 μm or 169.0 ± 18.5 μm vs. 128 ± 7 μm and 60°: 168.0 ± 5.6 μm or 172.0 ± 19.2 μm vs. 167.0 ± 9.0 μm) are greater than those of the end-to-end implant-supported bridge model (P < 0.05).

Conclusion

End-to-end implant-supported bridges have more uniform stress distribution and less displacement than single-implant cantilever beam bridges. End-to-end implant-supported bridges are ideal for replacing four consecutive missing incisors in the maxillary incisor region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kim, W. J., Cho, Y. D., Ku, Y., & Ryoo, H. M. (2022). The worldwide patent landscape of dental implant technology. Biomaterials Research, 26(1), 59. https://doi.org/10.1186/s40824-022-00307-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haugen, H. J., & Chen, H. (2022). Is there a better biomaterial for dental implants than titanium?-A review and meta-study analysis. Journal of Functional Biomaterials, 13(2), 46. https://doi.org/10.3390/jfb13020046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bilder, L., Stepco, E., Uncuta, D., Machtei, E., Sgan-Cohen, H., Bilder, A., & Aizenbud, D. (2019). Traumatic Dental Injuries among adolescents in Republic of Moldova. The Journal Of Clinical Pediatric Dentistry, 43(4), 269–273. https://doi.org/10.17796/1053-4625-43.4.8.

    Article  PubMed  Google Scholar 

  4. Bhatavadekar, N. (2012). Peri-implant soft tissue management: Where are we? Journal of Indian Society of Periodontology, 16(4), 623–627. https://doi.org/10.4103/0972-124X.106938

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yousif, A., Raghoebar, G. M., Putters, T. F., Vissink, A., & Schortinghuis, J. (2020). Calvarial bone grafts to augment the alveolar process in partially dentate patients: A prospective case series. International Journal of Implant Dentistry, 6(1), 57. https://doi.org/10.1186/s40729-020-00251-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu, L., Liu, Y., Wang, Y., & Chen, J. (2018). Clinical research on a flapless surgical technique application of narrow implants. Medicine (Baltimore), 97(44), e12646. https://doi.org/10.1097/MD.0000000000012646.

    Article  PubMed  Google Scholar 

  7. Alemayehu, D. B., & Jeng, Y. R. (2021). Three-dimensional finite element investigation into effects of implant thread design and loading rate on stress distribution in dental implants and anisotropic bone. Materials (Basel), 14(22), 6974. https://doi.org/10.3390/ma14226974

    Article  CAS  PubMed  Google Scholar 

  8. Wang, P., Xu, H., Gu, R., Zhu, L., Bai, D., & Xue, C. (2022). Integrating maxillary dentition and 3D facial photo using a modified CAD/CAM facebow. Bmc Oral Health, 22(1), 365. https://doi.org/10.1186/s12903-022-02394-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heo, K. H., Lim, Y. J., Kim, M. J., & Kwon, H. B. (2018). Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible. The Journal of Advanced Prosthodontics, 10(2), 138–146. https://doi.org/10.4047/jap.2018.10.2.138

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, D., Zheng, L., Wang, Q., Lu, L., & Ma, J. (2015). Displacements prediction from 3D finite element model of maxillary protraction with and without rapid maxillary expansion in a patient with unilateral cleft palate and alveolus. Biomedical Engineering Online, 14, 80. https://doi.org/10.1186/s12938-015-0074-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thompson, M. C., Field, C. J., & Swain, M. V. (2011). The all-ceramic, inlay supported fixed partial denture. Part 2. Fixed partial denture design: A finite element analysis. Australian Dental Journal, 56(3), 302–311. https://doi.org/10.1111/j.1834-7819.2011.01341.x.

    Article  CAS  PubMed  Google Scholar 

  12. Velasco-Ortega, E., Del Jimenez-Martin, R., Moreno-Munoz, I., Nunez-Marquez, J., Rondon-Romero, E., Cabanillas-Balsera, J. L., Jimenez-Guerra, D., Ortiz-Garcia, A., Lopez-Lopez, I., & Monsalve-Guil, J. (2022). Long-term treatment outcomes of implant prostheses in partially and totally edentulous patients. Materials (Basel), 15(14), 4910. https://doi.org/10.3390/ma15144910

    Article  CAS  PubMed  Google Scholar 

  13. Grutter, L., & Belser, U. C. (2009). Implant loading protocols for the partially edentulous esthetic zone. International Journal Of Oral and Maxillofacial Implants, 24 Suppl, 169–179.

    PubMed  Google Scholar 

  14. Krennmair, G., Seemann, R., Weinlander, M., Wegscheider, W., & Piehslinger, E. (2011). Implant-prosthodontic rehabilitation of anterior partial edentulism: A clinical review. International Journal of Oral and Maxillofacial Implants, 26(5), 1043–1050.

    PubMed  Google Scholar 

  15. Assaf, M. (2022). Dental implant therapeutic trends among dentists in palestine: A cross-sectional questionnaire study. Cureus. https://doi.org/10.7759/cureus.24301

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clemente, M. P., Moreira, A., Carvalho, N., Bernardes, G., Ferreira, A. P., Amarante, J. M., & Mendes, J. (2020). Orofacial trauma on the anterior zone of a trumpet’s player maxilla: Concept of the oral rehabilitation—A case report. International Journal of Environmental Research and Public Health, 17(24), 9423. https://doi.org/10.3390/ijerph17249423

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, Z., Zhang, S., Zhou, J., & Liang, H. (2022). Immediate versus delayed implantation for single-tooth restoration of maxillary anterior teeth: A comparative analysis on efficacy. Computational and Mathematical Methods in Medicine, 2022, 4490335. https://doi.org/10.1155/2022/4490335

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slutzkey, G. S., Cohen, O., Chaushu, L., Rahmanov, A., Mijiritsky, E., Beitlitum, I., & Kolerman, R. (2022). Immediate maxillary full-arch rehabilitation of periodontal patients with terminal dentition using tilted implants and bone augmentation: A 5-year retrospective cohort study. Journal of Clinical Medicine, 11(10), 2902. https://doi.org/10.3390/jcm11102902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, Y. T., Ma, C. L., Qiao, G., Liu, J. Y., Wang, Y., Song, J., Liu, Y., & Wang, Z. H. (2019). Three-dimensional finite element analysis of cantilever fixed bridge supported by implants with mandibular central incisor. Chinese Journal of Stomatology, 54(7), 463–468. https://doi.org/10.3760/cma.j.issn.1002-0098.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  20. Huang, H. L., Lin, T. W., Tsai, H. L., Wu, Y., Wu, A. Y. J. J. J. M., & Engineering, B. (2022). Biomechanical effects of bone atrophy, implant design, and vertical or tilted of posterior implant on all-on-four concept implantation: Finite element analysis. Journal of Medical and Biological Engineering, 42, 488–497.

    Article  Google Scholar 

  21. Rungsiyakull, C., Rungsiyakull, P., Suttiat, K., & Duangrattanaprathip, N. (2022). Stress distribution pattern in mini dental implant-assisted RPD with different clasp designs: 3D finite element analysis. International Journal Of Dentistry, 2022, 2416888. https://doi.org/10.1155/2022/2416888

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manafi Khajeh Pasha, A., Mahmoudi Sheykhsarmast, R., Manafi Khajeh Pasha, S., Khashabi, E. J. J. M., & Engineering, B. (2021). Influence of treatment plans on stress and deformation distribution in mandibular implant-supported overdenture and mandibular bone under traumatic load: A 3D FEA. Journal of Medical and Biological Engineering, 41(4), 543–557.

    Article  Google Scholar 

  23. Kwon, Y. J., Kim, J. G., & Lee, W. (2022). A framework for effective face-mask contact modeling based on finite element analysis for custom design of a facial mask. PLoS ONE, 17(7), e0270092. https://doi.org/10.1371/journal.pone.0270092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaquette, C., Mitchell, J., & Ivanovski, S. (2021). Recent advances in vertical alveolar bone augmentation using additive manufacturing technologies. Frontiers in Bioengineering and Biotechnology, 9, 798393. https://doi.org/10.3389/fbioe.2021.798393

    Article  PubMed  Google Scholar 

  25. Wu, V., van Oers, R. F. M., Schulten, E., Helder, M. N., Bacabac, R. G., & Klein-Nulend, J. (2018). Osteocyte morphology and orientation in relation to strain in the jaw bone. International Journal of Oral Science, 10(1), 2. https://doi.org/10.1038/s41368-017-0007-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agrawal, R., Narang, S., Ahmed, H., Prasad, S., Reddy, S., & Aila, S. (2021). Influence of occlusal bite forces on teeth with altered periodontal support: A three-dimensional finite element stress analysis. Journal of Pharmacy & Bioallied Sciences, 13(Suppl 1), S688–S691. https://doi.org/10.4103/jpbs.JPBS_785_20

    Article  Google Scholar 

  27. Mora, P., Nunwong, C., Sriromreun, P., Kaewsriprom, P., Srisorrachatr, U., Rimdusit, S., & Jubsilp, C. (2022). High performance composites based on highly filled Glass Fiber-Reinforced Polybenzoxazine for Post Application. Polymers (Basel), 14(20), 4321. https://doi.org/10.3390/polym14204321.

    Article  CAS  PubMed  Google Scholar 

  28. Leandro, L. N. R., Barra Grande, M. F., Pelegrine, A. A., Nishioka, R. S., Teixeira, M. L., & Basting, R. T. (2023). Stress distribution on implant-supported zirconia crown of maxillary first molar: Effect of oblique load on natural and antagonist tooth. Computer Methods in Biomechanics and Biomedical Engineering. https://doi.org/10.1080/10255842.2023.2195962

    Article  PubMed  Google Scholar 

  29. Zhang, C., Zeng, C., Wang, Z., Zeng, T., & Wang, Y. (2023). Optimization of stress distribution of bone-implant interface (BII). Biomaterials Advances, 147, 213342. https://doi.org/10.1016/j.bioadv.2023.213342

    Article  CAS  PubMed  Google Scholar 

  30. Turker, N., & Buyukkaplan, U. S. (2020). Effects of overdenture attachment systems with different working principles on stress transmission: A three-dimensional finite element study. The Journal of Advanced Prosthodontics, 12(6), 351–360. https://doi.org/10.4047/jap.2020.12.6.351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mosharraf, R., Molaei, P., Fathi, A., & Isler, S. (2021). Investigating the effect of nonrigid connectors on the success of tooth-and-implant-supported fixed partial prostheses in maxillary anterior region: A finite element analysis (FEA). International Journal Of Dentistry, 2021, 5977994. https://doi.org/10.1155/2021/5977994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Y. C., Lin, C. L., Yu, C. H., Chang, H. C., Lin, Y. M., Lin, J. W. J. J. M., & Engineering, B. (2022). Biomechanical analysis of mandibular implant-assisted removable partial denture with distal extension. Journal of Medical and Biological Engineering, 42(4), 534–543.

    Article  Google Scholar 

  33. Tseng, B. T., Yen, Y. C., Cheng, C. S., Wang, C. H., Lien, K. H., Huang, C. M., & Su, K. C. J. J. M. (2022). Biomechanical effects of different miniplate thicknesses and fixation methods applied in BSSO surgery under two occlusal conditions. Journal of Medical and Biological Engineering, 42(4), 445–458.

    Article  Google Scholar 

Download references

Funding

This study was funded by Youth Project of Jincheng People’s Hospital (No.: JSY-2021Y010).

Author information

Authors and Affiliations

Authors

Contributions

SGZ and NNZ conceptualized and designed the study. SGZ and WW collected, organized, and drafted the information. QTC and GBL analyzed the data. SGZ wrote the manuscript. NNZ performed manuscript revision. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Nannan Zhang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval

This study was approved by the Jincheng People’s Hospital Ethics Committee. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to Participate

Informed consent to participate was obtained from the participants before the study.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, W., Cao, Q. et al. Three-Dimensional Finite Element Stress Analysis of Different Implant-Supported Bridges in the Maxillary Incisal Regions. J. Med. Biol. Eng. 43, 322–331 (2023). https://doi.org/10.1007/s40846-023-00795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00795-y

Keywords

Navigation