Skip to main content

Osteocyte Spheroids as a Live-Cell Additive Proposed as a Component in the Compounding of Biofabricated Materials for Engineered Bone Tissue: Formation and Biological Performance

Abstract

Purpose

To proposes osteocyte spheroids as a live-cell additive for biofabricated materials in engineered bone tissue.

Methods

The osteocytes were encapsulated with alginate to form the cell spheroids. Different amounts of osteocyte spheroids with alginate encapsulation were cultured with osteoblasts. Osteocyte cell spheroids of 1, 3, and 5 beads were designated as 1B-Spher, 3B-Spher, and 5B-Spher, respectively. The morphology of the cell spheroids was observed with light microscopy and scanning electron microscopy. The biological performances, including cell viability and proliferation, alkaline phosphatase (ALP) activity, calcium synthesis and deposition, protein synthesis, and histology, were evaluated.

Results

The results demonstrated that collagen type I and calcium minerals were secreted from the cell spheroids. Cell spheroids cultured with osteoblasts had high cell proliferation, ALP activity, calcium synthesis, and protein synthesis. In particular, the 5B-Spher showed good biological performances for engineered bone tissue.

Conclusion

This research confirmed that osteocyte spheroids as a live-cell additive can be identified as a component for compounding biofabricated materials, in particular as a bioink component for 3D printed bone tissue.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Winkler, T., Sass, F. A., Duda, G. N., & Schmidt-Bleek, K. (2018). A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone & Joint Research, 7, 232–243.

    CAS  Article  Google Scholar 

  2. Saman, N., Gabriella, L., Maryam, T., & Chaozong, L. (2021). Biofabrication strategies for musculoskeletal disorders: Evolution towards clinical applications. Bioengineering (Basel), 8, 1–33.

    Google Scholar 

  3. Yongtao, Z., Di, W., Xia, Z., Mikhail, P., Andrew, B. T., Huaxiu, L., Kevin, H. Q., Daniel, A. H., Eric, J. W., Alexander, J. L., Meng, Z., Yukun, M., Maya, S., Fang, H., Changchun, N., Hao, W., Linjuan, H., Deyao, S., Qing, L., … Mostafa, E. D. (2020). Stem cell-friendly scaffold biomaterials: Applications for bone tissue engineering and regenerative medicine. Frontiers in Bioengineering and Biotechnology, 8, 1–18.

    Google Scholar 

  4. Richard, J. R. K., Alexander, J. W., & Paul, S. F. (2020). Biological materials: The next frontier for cell-free synthetic biology. Frontiers in Bioengineering and Biotechnology, 8, 1–15.

    Google Scholar 

  5. Gareth, T., Jon, C., Frederic, P., Philip, R., Luanluan, J., Fengxuan, H., Bin, L., & Wenmiao, S. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3, 278–314.

    Article  Google Scholar 

  6. John, N. H., Costas, A. V., Roland, W., Eleni, I., & Phil, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199.

    Article  CAS  Google Scholar 

  7. Aleksandra, B., Karolina, B., & Jolanta, K. S. (2019). Food additives in food products: A case study. IntechOpen, 10, 1–10.

    Google Scholar 

  8. Marturano, V., Cerruti, P., & Ambrogi, V. (2017). Polymer additives. Physical Sciences Reviews (Vol. 2, pp. 1–20). De Gruyter.

    Google Scholar 

  9. Lilian, S. K., & Carlos, A. C. J. (2021). Safety of plastic food packaging: The challenges about Non-Intentionally Added Substances (NIAS) discovery, identification and risk assessment. Polymers (Basel), 13, 1–43.

    Google Scholar 

  10. Chao, T., Yon, J. C., Chenjie, X., & Dong-An, W. (2019). Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. Journal of Materials Chemistry B, 7, 357–367.

    Article  Google Scholar 

  11. Sakai, S., Yoshii, A., Sakurai, S., Horii, K., & Nagasuna, O. (2020). Silk fibroin nanofibers: A promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 19, 1–8.

    Google Scholar 

  12. Felix, E. M., Rodrigo, A. R., & Jorge da Silva, V. L. (2019). Development of a smart bioink for bioprinting applications. Frontiers of Mechanical Engineering, 5, 1–12.

    Article  Google Scholar 

  13. Sarah, L. D., Matthew, P., & Lynda, F. B. (2013). The osteocyte: An endocrine cell and more. Endocrine Reviews, 34, 658–690.

    Article  CAS  Google Scholar 

  14. Delgado, C. J., & Bellido, T. (2015). Osteocytes and skeletal pathophysiology. Current Molecular Biology Reports, 1, 157–167.

    Article  Google Scholar 

  15. Rinaldo, F. S., de Gisela Rodrigues, S. S., Estela, S. C., Manuel, J. S., & Paulo, S. C. (2015). Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Research International, 2015, 1–18.

    Article  Google Scholar 

  16. Chocholata, P., Kulda, V., & Babuska, V. (2019). Fabrication of Scaffolds for bone-tissue regeneration. Materials, 12, 1–25.

    Article  CAS  Google Scholar 

  17. Mc Garrigle, M. J., Mullen, C. A., Haugh, M. G., Voisin, M. C., & McNamar, L. M. (2016). Osteocyte differentiation and the formation of an interconnected cellular network in vitro. European Cells and Materials, 24, 323–340.

    Article  Google Scholar 

  18. Yiqi, Y., Minqi, W., Shengbing, Y., Yixuan, L., Qinghui, Z., Hanjun, L., & Tingting, T. (2020). Bioprinting of an osteocyte network for biomimetic mineralization. Biofabrication, 12, 1–16.

    Google Scholar 

  19. Chin, S. O., Pooja, Y., Chen, Y. H., Gunnar, M., Joseph, B., Takuma, F., Huaitao, Z., & Narutoshi, H. (2017). 3D bioprinting using stem cells. Pediatric research, 83, 223–231.

    Google Scholar 

  20. Wang, A., Madden, L. A., & Paunov, V. N. (2020). Advanced biomedical applications based on emerging 3D cell culturing platforms. Journal of Materials Chemistry B, 8, 10487–10501.

    CAS  PubMed  Article  Google Scholar 

  21. Elena, D., Deborah, C., Sergio, L., Belen, C., Monica, R., Joaquin, J. S., Jose, M. V., & Jose, M. C. (2018). Adipose-derived mesenchymal stem cells: Are they a good therapeutic strategy for osteoarthritis? International Journal of Molecular Sciences, 19, 1–14.

    Google Scholar 

  22. Gionet, G. M. A., & Leach, J. K. (2019). Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomedical Materials, 13, 1–27.

    Google Scholar 

  23. Schmitt, A., Rodel, P., & Engert, J. (2015). Calcium alginate gels as stem cell matrix—making paracrine stem cell activity available for enhanced healing after surgery. PLoS ONE, 10, 1–28.

    Article  CAS  Google Scholar 

  24. Kim, J., & Adachi, T. (2019). Cell condensation triggers the differentiation of osteoblast precursor cells to osteocyte-like cells. Frontiers in Bioengineering and Biotechnology, 7, 1–27.

    Google Scholar 

  25. Ting-Ting, L., Katrin, E., Jurgen, V., & Thomas, G. (2013). Comparative studies on osteogenic potential of micro- and nanofibre scaffolds prepared by electrospinning of poly(ε-caprolactone). Progress in Biomaterials, 2, 1–13.

    Article  Google Scholar 

  26. Lee, S., Ko, Y., & Park, J. B. (2017). Evaluation of the shape, viability, stemness and osteogenic differentiation of cell spheroids formed from human gingiva-derived stem cells and osteoprecursor cells. Experimental and Therapeutic Medicine, 13, 3467–3473.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Chong, W., Wei, H., Yu, Z., Libing, H., Zhi, H., Ziling, C., Xiao, H., Shuo, T., Jiaming, L., Bingheng, L., Yen, W., & Min, W. (2020). 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 5, 82–91.

    Article  Google Scholar 

  28. Sai, B. R. M., Deepalekshmi, P., Rajan, C., & Kishor, K. S. (2021). A comparative review of natural and synthetic biopolymer composite Scaffolds. Polymers, 13, 1–51.

    Google Scholar 

  29. Maria, P. N., & Murthy, S. C. (2019). Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials, 4, 271–292.

    Article  Google Scholar 

  30. Mahdieh, G., Naser, K., & Reza, T. Q. (2015). The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Frontiers in Life Science, 9, 32–43.

    Google Scholar 

  31. Cao, N., Chen, X. B., & Schreyer, D. J. (2012). Influence of calcium ions on cell survival and proliferation in the context of an alginate hydrogel. ISRN Dentistry, 2012, 1–9.

    Google Scholar 

  32. Kouroupis, D., & Correa, D. (2021). Increased mesenchymal stem cell functionalization in three-dimensional manufacturing settings for enhanced therapeutic applications. Frontiers in Bioengineering and Biotechnology, 12, 1–15.

    Google Scholar 

  33. Hui, S., Ziqi, Z., Wuda, L., Yuan, F., Zhihua, L., & Junchao, W. (2021). Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals, 11, 1–18.

    Google Scholar 

  34. Jiwoon, J., Jung, H. K., & Jung, S. H. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials Research, 23, 1–11.

    Article  Google Scholar 

  35. Ebrahimi, M. (2019). Extracellular matrix: The ideal natural fibrous nanocomposite products. Applications of Nanocomposite Materials in Orthopedics, 13, 287–306.

    Article  Google Scholar 

  36. Xiaohua, Y., Darilis, S. G., & Andrew, S. K. (2014). How does the pathophysiological context influence delivery of bone growth factors? Advanced Drug Delivery Reviews, 84, 68–84.

    Google Scholar 

  37. Venkatraman, S. K., & Swamiappan, S. (2019). Review on calcium-and magnesium-based silicates for bone tissue engineering applications. Journal of Biomedical Materials Research Part A, 108, 546–1562.

    Google Scholar 

  38. Steve, S. H., Kaitlin, C. M., Bernard, Y. K. B., Caroline, B. V., & Kent, J. L. (2016). Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Translational Medicine, 5, 773–781.

    Article  CAS  Google Scholar 

  39. Julien, N., Sofia, M., Linda, R., Susanna, S., Francesco, N., & Laura, R. (2020). 3D Extracellular matrix mimics: Fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules, 21, 1968–1994.

    Article  CAS  Google Scholar 

  40. Chandra, P., & Lee, S. J. (2015). Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomarker Insights, 10, 105–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xing, Y., Chenchen, Z., Jingtao, L., Renkai, L., Bing, S., Quan, Y., & Shujuan, Z. (2016). Autophagy in bone homeostasis and the onset of osteoporosis. Bone Research, 7, 1–16.

    Google Scholar 

  42. Kim, S. H., Turnbull, J. E., & Guimond, S. (2011). Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. Journal of Endocrinology, 209, 139–151.

    CAS  PubMed  Article  Google Scholar 

  43. Natalia, D., Carlos, F. S., Daniel, V. B., Richard, W. F., Samir, H., Serena, M. B., & Ruth, E. C. (2018). Correction to: Evaluation of cell binding to collagen and gelatin: A study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 29, 1–14.

    Google Scholar 

  44. Putti, M., de Jong, S. M. J., Stassen, O. M. J. A., Sahlgren, C. M., & Dankers, P. Y. W. (2019). A Supramolecular platform for the introduction of Fc-fusion bioactive proteins on biomaterial surfaces. ACS Applied Polymer Materials, 2019, 2044–2054.

    Article  CAS  Google Scholar 

  45. Ming, D., Laura, S., Xufeng, N., Yubo, F., & Peter, X. M. (2018). Biomimetic delivery of signals for bone tissue engineering. Bone Research, 6, 1–12.

    Article  CAS  Google Scholar 

  46. Kim, J., & Adachi, T. (2019). Cell condensation triggers the differentiation of osteoblast precursor cells to osteocyte-like cells. Frontiers in Bioengineering and Biotechnology, 23, 1–27.

    Google Scholar 

  47. Chen, A., Wang, L., Liu, S., Wang, Y., Liu, Y., Wang, M., Nakshatri, H., Li, B. Y., & Yokota, H. (2018). Attraction and compaction of migratory breast cancer cells by bone matrix proteins through tumor-osteocyte interactions. Scientific Reports, 8, 1–13.

    Google Scholar 

  48. Genova, T., Roato, I., Carossa, M., Chiara, M., Davide, C., & Federico, M. (2020). Advances on bone substitutes through 3D bioprinting. International Journal of Molecular Sciences, 21, 1–28.

    Article  CAS  Google Scholar 

  49. Murata, D., Arai, K., & Nakayama, K. (2020). Scaffold-free bio-3D printing using spheroids as “Bio-Inks” for tissue (Re-)construction and drug response tests. Advanced Healthcare Materials, 9, 1–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was done under project number REC 63-364-25-2. This research was also supported by the Postdoctoral Fellowship from Prince of Songkla University. The authors would like to thank the Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand and College of Materials and Textiles, Zhejiang Sci-Tech University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirut Meesane.

Ethics declarations

Conflict of interest

There are no conflicts of interest on this manuscript which does not contain experiments in animal and human.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangkert, S., Meesane, J. & Kong, X. Osteocyte Spheroids as a Live-Cell Additive Proposed as a Component in the Compounding of Biofabricated Materials for Engineered Bone Tissue: Formation and Biological Performance. J. Med. Biol. Eng. (2022). https://doi.org/10.1007/s40846-022-00751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-022-00751-2

Keywords

  • Engineered bone tissue
  • Cell spheroid
  • Osteocyte
  • Bioink
  • Biofabrication