Skip to main content

Potential Impact of SPECT Resolution on Quantification of Left Ventricular Volumes and Ejection Fraction: A Phantom Study

Abstract

Purpose

Accuracy of quantitative assessment of the left ventricular (LV) function derived from ECG-gated SPECT may be affected by image resolution due to the partial volume effect (PVE). This study was to investigate the potential impact of SPECT resolution on quantification of the LV volumes and ejection fraction (EF).

Methods

Two hybrid SPECT/CT systems of different image resolutions were adopted in this study. One was a conventional dual-head SPECT scanner with low resolution (LR), and the other was a dedicated cardiac SPECT camera with high resolution (HR). Six custom-made cardiac phantoms each with a different LV volume were scanned using both scanners, and images were reconstructed with and without CT-based attenuation correction. A total of 11-bin gated SPECT images and 30 LVEFs were generated from the six phantom volumes to mimic a sequence of cardiac gated SPECT. Four commercial quantification software: Cedars-Sinai-QGS (QGS), Emory-Cardiac Toolbox (ECTB), Invia-Corridor4DM (4DM), and Yale Wackers- Liu CQ (WLCQ), were used to quantify the phantom LV volumes and EFs for comparisons.

Results

Both SPECT-quantified phantom volumes and EFs are correlated excellently with the true phantom values using Yale-WLCQ software, in which SPECT image resolution and CT-based attenuation show little effect on the correlations. However, the correlations of true phantom values vs. SPECT-quantified LV phantom volumes and EFs calculated from HR-SPECT with attenuation correction are either worse using ECTB, QGS, WLCQ or similar using 4DM as compared to those calculated from LR-SPECT. Quantification errors of the LV phantom EFs quantified from HR-SPECT are significantly greater than those from LR-SPECT, regardless which quantitative software was used (− 21 ± 11% vs. − 9 ± 8% with QGS, − 10 ± 16% vs. − 1 ± 11% with ECTB, − 16 ± 10% vs. − 8 ± 11% with 4DM, − 13 ± 7% vs. − 1 ± 5% with WLCQ; all p < 0.02).

Conclusion

Quantitative assessments of the LVEF from HR-SPECT mainly derived from the PVE results in a significant underestimation of true LVEFs as compared to that from LR-SPECT. Accordingly, current software tools for quantification of the LVEF may need to be remedied for HR-SPECT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abidov, A., Germano, G., Hachamovitch, R., Slomka, P., & Berman, D. S. (2013). Gated SPECT in assessment of regional and global left ventricular function: An update. Journal of Nuclear Cardiology, 20(6), 1118–1143.

    Article  Google Scholar 

  2. Bai, C., Conwell, R., Kindem, J., Babla, H., Gurley, M., De Los Santos, R., Old, R., Weatherhead, R., Arram, S., & Maddahi, J. (2010). Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. Journal of Nuclear Cardiology, 17(3), 459–469.

    Article  Google Scholar 

  3. Bellenger, N. G., Marcus, N. J., Rajappan, K., Yacoub, M., Banner, N. R., & Pennell, D. J. (2002). Comparison of techniques for the measurement of left ventricular function following cardiac transplantation: Ventricular function. Journal of Cardiovascular Magnetic Resonance, 4(2), 255–263.

    Article  Google Scholar 

  4. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England), 1(8476), 307–310.

    CAS  Article  Google Scholar 

  5. Bocher, M., Blevis, I. M., Tsukerman, L., Shrem, Y., Kovalski, G., & Volokh, L. (2010). A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. European Journal of Nuclear Medicine and Molecular Imaging, 37(10), 1887–1902.

    Article  Google Scholar 

  6. Chugh, A., Ficaro, E., Moscucci, M., Kritzman, J., & Corbett, J. (2001). Quantification of left ventricular function by gated perfusion tomography: Testing of a new fully automatic algorithm. Journal of the American College of Cardiology, 37, 394A.

    Article  Google Scholar 

  7. Cooke, C. D., Garcia, E. V., Cullom, S. J., Faber, T. L., & Pettigrew, R. I. (1994). Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: A simulation study based on canine and patient data. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 35(7), 1185–1192.

    CAS  Google Scholar 

  8. Dey, J. (2012). Improvement of performance of cardiac SPECT camera using curved detectors with pinholes. IEEE Transactions on Nuclear Science, 59(2), 334–347.

    Article  Google Scholar 

  9. Erlandsson, K., Buvat, I., Pretorius, P. H., Thomas, B. A., & Hutton, B. F. (2012). A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Physics in Medicine and Biology, 57(21), R119.

    Article  Google Scholar 

  10. Erlandsson, K., Kacperski, K., van Gramberg, D., & Hutton, B. F. (2009). Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Physics in Medicine & Biology, 54(9), 2635–2649. https://doi.org/10.1088/0031-9155/54/9/003

    Article  Google Scholar 

  11. Faber, T. L., Cooke, C. D., Folks, R. D., Vansant, J. P., Nichols, K. J., DePuey, E. G., Pettigrew, R. I., & Garcia, E. V. (1999). Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. Journal of Nuclear Medicine, 40, 650–659.

    CAS  PubMed  Google Scholar 

  12. Ficaro, E. P., Lee, B. C., Kritzman, J. N., & Corbett, J. R. (2007). Corridor4DM: The Michigan method for quantitative nuclear cardiology. Journal of Nuclear Cardiology, 14(4), 455–465.

    Article  Google Scholar 

  13. Germano, G., Erel, J., Lewin, H., Kavanagh, P. B., & Berman, D. S. (1997). Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. Journal of the American College of Cardiology, 30(5), 1360–1367.

    CAS  Article  Google Scholar 

  14. Germano, G., Kavanagh, P. B., Slomka, P. J., Van Kriekinge, S. D., Pollard, G., & Berman, D. S. (2007). Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. Journal of Nuclear Cardiology, 14(4), 433–454.

    Article  Google Scholar 

  15. Germano, G., Kiat, H., Kavanagh, P. B., Moriel, M., Mazzanti, M., Su, H.-T., Train, K. F. V., & Berman, D. S. (1995). Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. Journal of Nuclear Medicine, 36(11), 2138.

    CAS  PubMed  Google Scholar 

  16. Giorgetti, A., Masci, P. G., Marras, G., Rustamova, Y. K., Gimelli, A., Genovesi, D., Lombardi, M., & Marzullo, P. (2013). Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: Comparison to cardiac magnetic resonance imaging. European Journal of Nuclear Medicine and Molecular Imaging, 40(12), 1869–1875. https://doi.org/10.1007/s00259-013-2505-9

    Article  PubMed  Google Scholar 

  17. Hachamovitch, R., Berman, D. S., Shaw, L. J., Kiat, H., Cohen, I., Cabico, J. A., Friedman, J., & Diamond, G. A. (1998). Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation, 97(6), 535–543.

    CAS  Article  Google Scholar 

  18. Hashemi-Zonouz, T., Wu, J., Sandoval, V., Allahverdi, S. H., Fazzone-Chettiar, R., & Liu, Y.-H. (2019). A New approach to quantification of end-diastolic volume and ejection fraction from SPECT equilibrium radionuclide angiocardiography: Methodology and phantom validation. Journal of Medical and Biological Engineering, 39(3), 393–402.

    Article  Google Scholar 

  19. Holly, T. A., Abbott, B. G., Al-Mallah, M., Calnon, D. A., Cohen, M. C., DiFilippo, F. P., Ficaro, E. P., Freeman, M. R., Hendel, R. C., & Jain, D. (2010). ASNC imaging guidelines for nuclear cardiology procedures: Single photon-emission computed tomography. Journal of Nuclear Cardiology, 17(5), 941–973.

    Article  Google Scholar 

  20. Hutton, B. F., & Osiecki, A. (1998). Correction of partial volume effects in myocardial SPECT. Journal of Nuclear Cardiology, 5(4), 402–413. https://doi.org/10.1016/S1071-3581(98)90146-5

    CAS  Article  PubMed  Google Scholar 

  21. Kennedy, J. A., Israel, O., & Frenkel, A. (2014). 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. Journal of Nuclear Cardiology, 21(3), 443–452.

    Article  Google Scholar 

  22. Knoll, P., Kotalova, D., Köchle, G., Kuzelka, I., Minear, G., Mirzaei, S., Šámal, M., Zadrazil, L., & Bergmann, H. (2012). Comparison of advanced iterative reconstruction methods for SPECT/CT. Zeitschrift für medizinische Physik, 22(1), 58–69.

    Article  Google Scholar 

  23. Kojima, A., Matsumoto, M., Takahashi, M., Hirota, Y., & Yoshida, H. (1989). Effect of spatial resolution on SPECT quantification values. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 30(4), 508–514.

    CAS  Google Scholar 

  24. Liu, H., Chan, C., Grobshtein, Y., Ma, T., Liu, Y., Wang, S., Stacy, M. R., Sinusas, A. J., & Liu, C. (2015). Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT. Physics in Medicine and Biology, 60(17), 6751–6773. https://doi.org/10.1088/0031-9155/60/17/6751

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, H., Ma, T., Chen, S., Liu, Y., Wang, S., & Jin, Y. (2012). Development of GPU based image reconstruction method for clinical SPECT. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, USA.

  26. Liu, Y.-H. (2007). Quantification of nuclear cardiac images: The Yale approach. Journal of Nuclear Cardiology, 14(4), 483–491.

    Article  Google Scholar 

  27. Liu, Y.-H., Fazzone-Chettiar, R., Sandoval, V., Tsatkin, V., Miller, E. J., & Sinusas, A. J. (2021). New approach for quantification of left ventricular function from low-dose gated bloodpool SPECT: Validation and comparison with conventional methods in patients. Journal of Nuclear Cardiology, 28(3), 939–950.

  28. Liu, Y.-H., Sinusas, A. J., Khaimov, D., Gebuza, B. I., & Frans, J. T. (2005). New hybrid count-and geometry-based method for quantification of left ventricular volumes and ejection fraction from ECG-gated SPECT: Methodology and validation. Journal of Nuclear Cardiology, 12(1), 55–65.

    CAS  Article  Google Scholar 

  29. Liu, Y.-H., Sinusas, A. J., Khaimov, D., Gebuza, B. I., & Wackers, F. J. T. (2005). New hybrid count- and geometry-based method for quantification of left ventricular volumes and ejection fraction from ECG-gated SPECT: Methodology and validation. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 12(1), 55–65. https://doi.org/10.1016/j.nuclcard.2004.09.015

    CAS  Article  Google Scholar 

  30. Liu, Y. H., Sinusas, A. J., DeMan, P., Zaret, B. L., & Wackers, F. J. (1999). Quantification of SPECT myocardial perfusion images: Methodology and validation of the Yale-CQ method. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 6(2), 190–204. https://doi.org/10.1016/s1071-3581(99)90080-6

    CAS  Article  Google Scholar 

  31. Matsuo, S., Nakajima, K., Onoguchi, M., Wakabayash, H., Okuda, K., & Kinuya, S. (2015). Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects. Annals of Nuclear Medicine, 29(5), 452–459. https://doi.org/10.1007/s12149-015-0965-7.pdf

    Article  PubMed  Google Scholar 

  32. Nakajima, K., Higuchi, T., Taki, J., Kawano, M., & Tonami, N. (2001). Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: Comparison of 4 software programs. Journal of Nuclear Medicine, 42(10), 1571–1578.

    CAS  PubMed  Google Scholar 

  33. Nakajima, K., Okuda, K., Nystrom, K., Richter, J., Minarik, D., Wakabayashi, H., Matsuo, S., Kinuya, S., & Edenbrandt, L. (2013). Improved quantification of small hearts for gated myocardial perfusion imaging. European Journal of Nuclear Medicine and Molecular Imaging, 40(8), 1163–1170. https://doi.org/10.1007/s00259-013-2431-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Pelletier-Galarneau, M., Finnerty, V., Tan, S., Authier, S., Gregoire, J., & Harel, F. (2019). Assessment of left ventricular ejection fraction with cardiofocal collimators: Comparison between IQ-SPECT, planar equilibrium radionuclide angiography, and cardiac magnetic resonance. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 26(6), 1857–1864. https://doi.org/10.1007/s12350-018-1251-6

    Article  Google Scholar 

  35. Pretorius, P. H., King, M. A., Gifford, H. C., Dahlberg, S. T., Spencer, F., Simon, E., Rashkin, J., Botkin, N., Berndt, W., Narayanan, M. V., & Leppo, J. A. (2005). Myocardial perfusion SPECT reconstruction: Receiver operating characteristic comparison of CAD detection accuracy of filtered backprojection reconstruction with all of the clinical imaging information available to readers and solely stress slices iteratively reconstructed with combined compensation. Journal of Nuclear Cardiology, 12(3), 284–293. https://doi.org/10.1016/j.nuclcard.2005.01.012

    Article  PubMed  Google Scholar 

  36. Römer, W., Reichel, N., Vija, H. A., Nickel, I., Hornegger, J., Bautz, W., & Kuwert, T. (2006). Isotropic reconstruction of SPECT data using OSEM3D: Correlation with CT. Academic Radiology, 13(4), 496–502.

    Article  Google Scholar 

  37. Sharir, T., Germano, G., Kavanagh, P. B., Lai, S., Cohen, I., Lewin, H. C., Friedman, J. D., Zellweger, M. J., & Berman, D. S. (1999). Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation, 100(10), 1035–1042. https://doi.org/10.1161/01.cir.100.10.1035

    CAS  Article  PubMed  Google Scholar 

  38. Shaw, L. J., & Iskandrian, A. E. (2004). Prognostic value of gated myocardial perfusion SPECT. Journal of Nuclear Cardiology, 11(2), 171–185.

    Article  Google Scholar 

  39. Shaw, L. J., & Narula, J. (2009). Risk assessment and predictive value of coronary artery disease testing. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 50(8), 1296–1306. https://doi.org/10.2967/jnumed.108.059592

    Article  Google Scholar 

  40. Slomka, P., Hung, G.-U., Germano, G., & Berman, D. S. (2016). Novel SPECT technologies and approaches in cardiac imaging. Cardiovascular Innovations and Applications, 2(1), 31.

    Article  Google Scholar 

  41. Smith, M. F. (2018). New hardware, new software, different results: The estimation of left ventricular volumes and ejection fractions with gated myocardial perfusion SPECT. Springer.

    Google Scholar 

  42. Thorley, P., Plein, S., Bloomer, T., Ridgway, J., & Sivananthan, U. (2003). Comparison of 99mTc tetrofosmin gated SPECT measurements of left ventricular volumes and ejection fraction with MRI over a wide range of values. Nuclear Medicine Communications, 24(7), 763–769.

    CAS  Article  Google Scholar 

  43. Wu, J., & Liu, C. (2019). Recent advances in cardiac SPECT instrumentation and imaging methods. Physics in Medicine & Biology, 64(6), 06TR01.

    CAS  Article  Google Scholar 

  44. Yao, Y., Wang, D.-W., Fang, W., Tian, Y.-Q., Shen, R., Sun, X.-X., Guo, F., Chu, K.-W., Cui, C., Zhao, S.-H., & He, Z.-X. (2019). Evaluation of left ventricular volumes and ejection fraction by (99m)Tc-MIBI gated SPECT and (18)F-FDG gated PET in patients with prior myocardial infarction. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology. https://doi.org/10.1007/s12350-019-01709-9

    Article  Google Scholar 

  45. Zeintl, J., Rempel, T., Bhattacharya, M., Malmin, R., & Vija, A. (2011). Performance characteristics of the SMARTZOOM® collimator. 2011 IEEE Nuclear Science Symposium Conference Record

Download references

Acknowledgements

The authors would like to thank Mr. Avi Barshalev from GE Healthcare for assistance in the DICOM format conversion of our phantom data, Dr. Jonathan Moody from Invia Medical Imaging Solutions for technical support in Corridor4DM software, and Dr. Albert Sinusas for helpful discussions in this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hwa Liu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Aslan, M., Sandoval, V. et al. Potential Impact of SPECT Resolution on Quantification of Left Ventricular Volumes and Ejection Fraction: A Phantom Study. J. Med. Biol. Eng. (2022). https://doi.org/10.1007/s40846-022-00747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-022-00747-y

Keywords

  • LV Volume
  • LVEF
  • Partial Volume Effect
  • SPECT resolution