Zhou, Y. (2015). Principles and applications of therapeutic ultrasound in healthcare. CRC Press.
Book
Google Scholar
ter Haar, G. (1978). Basic physics of therapeutic ultrasound. Physiotherapy, 64(4), 100–103.
PubMed
Google Scholar
ter Haar, G. (1999). Therapeutic ultrasound. European Journal of Ultrasound, 9(1), 3–9.
Article
PubMed
Google Scholar
Bailey, M., Khokhlova, V., Sapozhnikov, O., Kargl, S., & Crum, L. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 49(4), 369–388. https://doi.org/10.1134/1.1591291
Article
Google Scholar
Wijlemans, J., Bartels, L., Deckers, R., Ries, M., Mali, W. T. M., Moonen, C., & Van Den Bosch, M. (2012). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours. Cancer Imaging, 12(2), 387. https://doi.org/10.1102/1470-7330.2012.9038
CAS
Article
PubMed Central
PubMed
Google Scholar
Zhang, L., & Wang, Z.-B. (2010). High-intensity focused ultrasound tumor ablation: Review of ten years of clinical experience. Frontiers of medicine in China, 4(3), 294–302. https://doi.org/10.1007/s11684-010-0092-8
Article
PubMed
Google Scholar
Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., & Vykhodtseva, N. (2005). Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage, 24(1), 12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046
Article
PubMed
Google Scholar
Pitt, W. G., Husseini, G. A., & Staples, B. J. (2004). Ultrasonic drug delivery–a general review. Expert opinion on drug delivery, 1(1), 37–56. https://doi.org/10.1517/17425247.1.1.37
CAS
Article
PubMed Central
PubMed
Google Scholar
Ricci, S., Dinia, L., Del Sette, M., Anzola, P., Mazzoli, T., Cenciarelli, S., & Gandolfo, C. (2012). Sonothrombolysis for acute ischaemic stroke. Cochrane Database Systematic Review. https://doi.org/10.1002/14651858.cd008348
Article
Google Scholar
Maxwell, A., Sapozhnikov, O., Bailey, M., Crum, L., Zhen, X., Fowlkes, B., Cain, C., & Khokhlova, V. (2012). Disintegration of tissue using high intensity focused ultrasound: Two approaches that utilize shock waves. Acoustics Today, 8(4), 24–37. https://doi.org/10.1121/1.4788649
Article
Google Scholar
Diederich, C., & Hynynen, K. (1991). The feasibility of using electrically focused ultrasound arrays to induce deep hyperthermia via body cavities. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 38(3), 207–219. https://doi.org/10.1109/58.79605
CAS
Article
PubMed
Google Scholar
Wan, H., VanBaren, P., Ebbini, E. S., & Cain, C. A. (1996). Ultrasound surgery: Comparison of strategies using phased array systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 1085–1098. https://doi.org/10.1109/58.542052
Article
Google Scholar
Daum, D., & Hynynen, K. (1999). Theoretical design of a spherically sectioned phased array for ultrasound surgery of the liver. European Journal of Ultrasound, 9(1), 61–69. https://doi.org/10.1016/s0929-8266(99)00006-3
CAS
Article
PubMed
Google Scholar
Fan, X., & Hynynen, K. (1996). Ultrasound surgery using multiple sonications—treatment time considerations. Ultrasound in Medicine and Biology, 22(4), 471–482. https://doi.org/10.1016/0301-5629(96)00026-9
CAS
Article
PubMed
Google Scholar
Payne, A., Vyas, U., Todd, N., Bever, J., Christensen, D. A., & Parker, D. L. (2011). The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Medical physics, 38(9), 4971–4981. https://doi.org/10.1118/1.3618729
Article
PubMed Central
PubMed
Google Scholar
Saleh, K., & Smith, N. (2004). Two-dimensional ultrasound phased array design for tissue ablation for treatment of benign prostatic hyperplasia. International Journal of Hyperthermia, 20(1), 7–31. https://doi.org/10.1080/0265673031000150867
CAS
Article
PubMed
Google Scholar
di Biase, L., Falato, E., Caminiti, M. L., Pecoraro, P. M., Narducci, F., & Di Lazzaro, V. (2021). Focused ultrasound (FUS) for chronic pain management: Approved and potential applications. Neurology Research International, 2021, 8438498.
Article
PubMed
Google Scholar
Lee, W., Kim, H.-C., Jung, Y., Chung, Y. A., Song, I.-U., Lee, J.-H., & Yoo, S.-S. (2016). Transcranial focused ultrasound stimulation of human primary visual cortex. Scientific Reports, 6, 34026.
CAS
Article
PubMed
Google Scholar
Ho, C.-S., Ju, K.-C., Cheng, T.-Y., Chen, Y.-Y., & Lin, W.-L. (2007). Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: A preliminary numerical study. Physics in Medicine and Biology, 52(15), 4585. https://doi.org/10.1088/0031-9155/52/15/015
Article
PubMed
Google Scholar
Bakker, J., Paulides, M., Obdeijn, I.-M., Van Rhoon, G., & Van Dongen, K. (2009). An ultrasound cylindrical phased array for deep heating in the breast: Theoretical design using heterogeneous models. Physics in Medicine and Biology, 54(10), 3201. https://doi.org/10.1088/0031-9155/54/10/016
CAS
Article
PubMed
Google Scholar
Ebbini, E., Umemura, S., Ibbini, M., & Cain, C. (1988). A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 35(5), 561–572. https://doi.org/10.1109/58.8034
CAS
Article
PubMed
Google Scholar
Zhou, Y., Zhai, L., Simmons, R., & Zhong, P. (2006). Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. The Journal of the Acoustical Society of America, 120(2), 676–685. https://doi.org/10.1121/1.2214131
Article
PubMed
Google Scholar
Leão-Neto, P., Cardoso, G. S., Marques, A. S., Andrade, M. A. B., Adamowski, J. C., Pavan, T. Z., Silva, G. T., & Lopes, J. H. (2020). Subwavelength focusing beam and superresolution ultrasonic imaging using a core-shell lens. Physical Review Applied, 13(1), 14062. https://doi.org/10.1103/PhysRevApplied.13.014062
Article
Google Scholar
Walker, E. L., Jin, Y., Reyes, D., & Neogi, A. (2020). Sub-wavelength lateral detection of tissue-approximating masses using an ultrasonic metamaterial lens. Nature Communications, 11, 5967. https://doi.org/10.1038/s41467-020-19591-2
CAS
Article
PubMed Central
PubMed
Google Scholar
Laureti, S., Hutchins, D. A., Astolfi, L., Watson, R. L., Thomas, P. J., Burrascano, P., Nie, L., Freear, S., Askari, M., Clare, A. T., & Ricci, M. (2020). Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water. Scientific Reports, 10, 10601. https://doi.org/10.1038/s41598-020-67454-z
CAS
Article
PubMed Central
PubMed
Google Scholar
Li, C., Yang, Y., Guo, X., Tu, J., Huang, P., Li, F., & Zhang, D. (2017). Enhanced ultrasonic focusing and temperature elevation via a therapeutic ultrasonic transducer with sub-wavelength periodic structure. Applied Physics Letters, 111(5), 053701. https://doi.org/10.1063/1.4990772
CAS
Article
Google Scholar
Lin, Z., Guo, X., Tu, J., Cheng, J., Wu, J., Huang, P., & Zhang, D. (2015). A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures. Applied Physics Letters, 107(11), 113505. https://doi.org/10.1063/1.4931139
CAS
Article
Google Scholar
Lin, Z., Guo, X., Tu, J., Ma, Q., Wu, J., & Zhang, D. (2015). Acoustic non-diffracting Airy beam. Journal of Applied Physics, 117(10), 104503. https://doi.org/10.1063/1.4914295
CAS
Article
Google Scholar
Li, F., Wang, H., Zeng, D., Fan, T., Geng, H., Tu, J., Guo, X., Gong, X., Zhao, C., & Wang, Z. (2013). Sub-wavelength ultrasonic therapy using a spherical cavity transducer with open ends. Applied Physics Letters, 102(20), 204102. https://doi.org/10.1063/1.4807622
CAS
Article
Google Scholar
Treeby, B. E., Budisky, J., Wise, E. S., Jaros, J., & Cox, B. T. (2018). Rapid calculation of acoustic fields from arbitrary continuous-wave sources. Journal of the Acoustical Society of America, 143(1), 529–537.
Article
PubMed
Google Scholar
Ebbini, E. S., & Cain, C. A. (1991). A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Transactions on Biomedical Engineering, 38, 634–643.
CAS
Article
PubMed
Google Scholar
Goss, S. A., Frizzell, L. A., Kouzmanoff, J. T., Barich, J. M., & Yang, J. M. (1996). Sparse random ultrasound phased array for focal surgery. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 43(6), 1111–1121. https://doi.org/10.1109/58.542054
Article
Google Scholar
Gavrilov, L. R., & Hand, J. W. (2000). A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(1), 125–139. https://doi.org/10.1109/58.818755
CAS
Article
PubMed
Google Scholar
Ma, G., Fan, X., Ma, F., de Rosny, J., Sheng, P., & Fink, M. (2018). Towards anti-causal Green’s function for three-dimensional sub-diffraction focusing. Nature Physics, 14(6), 608.
CAS
Article
Google Scholar
Apfel, R. E., & Holland, C. K. (1991). Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Medicine & Biology, 17(2), 179–185. https://doi.org/10.1016/0301-5629(91)90125-g
CAS
Article
Google Scholar
Chapelon, J.-Y., Cathignol, D., & Blanc, E. Adjustable focusing therapeutic apparatus with no secondary focusing. US 5,738,635