Skip to main content
Log in

Simulation of the Sub-Wavelength Focusing Capability of Cylindrical Concave Phased Array

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Focused ultrasound (FUS) is emerging as an effective modality for clinical therapy. The phased array allows fast focus shifting electronically, but such focus shifting distance is quite limited due to the presence of a grating lobe and reduced acoustic pressure at the shifted focus. In addition, a small focus is preferred to enhance the treatment safety and efficacy, especially in neurological applications. However, because of the diffraction limit the size of most of the focal region from a concave transducer cannot be less than a wavelength.

Methods

In order to enhance the focusing ability (i.e., the acoustic pressure at the focus and the − 6 dB focused beam area) over a large focus shifting distance and reducing the focal size, a cylindrical concave phased array transducer with a large focusing angle was proposed and evaluated numerically. The generated acoustic field was simulated using the k-space pseudospectral method by varying the driving frequency, focusing angle, and focus shifting distance.

Results

It is found that the fully enclosed cylindrical design (focusing angle of 360°) could achieve high acoustic pressure and small sub-wavelength focused beam (i.e., < 2 mm2) simultaneously at the focus shifting up to 40 mm in comparison to those with a small focusing angle (i.e., 90°).

Conclusion

Such a fully enclosed cylindrical design may result in the FUS application throughout a large region-of-interest with satisfactory and almost consistent focusing abilities. Therefore, the therapeutic safety and efficacy may be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou, Y. (2015). Principles and applications of therapeutic ultrasound in healthcare. CRC Press.

    Book  Google Scholar 

  2. ter Haar, G. (1978). Basic physics of therapeutic ultrasound. Physiotherapy, 64(4), 100–103.

    Google Scholar 

  3. ter Haar, G. (1999). Therapeutic ultrasound. European Journal of Ultrasound, 9(1), 3–9.

    Article  Google Scholar 

  4. Bailey, M., Khokhlova, V., Sapozhnikov, O., Kargl, S., & Crum, L. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 49(4), 369–388. https://doi.org/10.1134/1.1591291

    Article  Google Scholar 

  5. Wijlemans, J., Bartels, L., Deckers, R., Ries, M., Mali, W. T. M., Moonen, C., & Van Den Bosch, M. (2012). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours. Cancer Imaging, 12(2), 387. https://doi.org/10.1102/1470-7330.2012.9038

    Article  CAS  Google Scholar 

  6. Zhang, L., & Wang, Z.-B. (2010). High-intensity focused ultrasound tumor ablation: Review of ten years of clinical experience. Frontiers of medicine in China, 4(3), 294–302. https://doi.org/10.1007/s11684-010-0092-8

    Article  Google Scholar 

  7. Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., & Vykhodtseva, N. (2005). Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage, 24(1), 12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046

    Article  Google Scholar 

  8. Pitt, W. G., Husseini, G. A., & Staples, B. J. (2004). Ultrasonic drug delivery–a general review. Expert opinion on drug delivery, 1(1), 37–56. https://doi.org/10.1517/17425247.1.1.37

    Article  CAS  Google Scholar 

  9. Ricci, S., Dinia, L., Del Sette, M., Anzola, P., Mazzoli, T., Cenciarelli, S., & Gandolfo, C. (2012). Sonothrombolysis for acute ischaemic stroke. Cochrane Database Systematic Review. https://doi.org/10.1002/14651858.cd008348

    Article  Google Scholar 

  10. Maxwell, A., Sapozhnikov, O., Bailey, M., Crum, L., Zhen, X., Fowlkes, B., Cain, C., & Khokhlova, V. (2012). Disintegration of tissue using high intensity focused ultrasound: Two approaches that utilize shock waves. Acoustics Today, 8(4), 24–37. https://doi.org/10.1121/1.4788649

    Article  Google Scholar 

  11. Diederich, C., & Hynynen, K. (1991). The feasibility of using electrically focused ultrasound arrays to induce deep hyperthermia via body cavities. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 38(3), 207–219. https://doi.org/10.1109/58.79605

    Article  CAS  Google Scholar 

  12. Wan, H., VanBaren, P., Ebbini, E. S., & Cain, C. A. (1996). Ultrasound surgery: Comparison of strategies using phased array systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(6), 1085–1098. https://doi.org/10.1109/58.542052

    Article  Google Scholar 

  13. Daum, D., & Hynynen, K. (1999). Theoretical design of a spherically sectioned phased array for ultrasound surgery of the liver. European Journal of Ultrasound, 9(1), 61–69. https://doi.org/10.1016/s0929-8266(99)00006-3

    Article  CAS  Google Scholar 

  14. Fan, X., & Hynynen, K. (1996). Ultrasound surgery using multiple sonications—treatment time considerations. Ultrasound in Medicine and Biology, 22(4), 471–482. https://doi.org/10.1016/0301-5629(96)00026-9

    Article  CAS  Google Scholar 

  15. Payne, A., Vyas, U., Todd, N., Bever, J., Christensen, D. A., & Parker, D. L. (2011). The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Medical physics, 38(9), 4971–4981. https://doi.org/10.1118/1.3618729

    Article  Google Scholar 

  16. Saleh, K., & Smith, N. (2004). Two-dimensional ultrasound phased array design for tissue ablation for treatment of benign prostatic hyperplasia. International Journal of Hyperthermia, 20(1), 7–31. https://doi.org/10.1080/0265673031000150867

    Article  CAS  Google Scholar 

  17. di Biase, L., Falato, E., Caminiti, M. L., Pecoraro, P. M., Narducci, F., & Di Lazzaro, V. (2021). Focused ultrasound (FUS) for chronic pain management: Approved and potential applications. Neurology Research International, 2021, 8438498.

    Article  Google Scholar 

  18. Lee, W., Kim, H.-C., Jung, Y., Chung, Y. A., Song, I.-U., Lee, J.-H., & Yoo, S.-S. (2016). Transcranial focused ultrasound stimulation of human primary visual cortex. Scientific Reports, 6, 34026.

    Article  CAS  Google Scholar 

  19. Ho, C.-S., Ju, K.-C., Cheng, T.-Y., Chen, Y.-Y., & Lin, W.-L. (2007). Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: A preliminary numerical study. Physics in Medicine and Biology, 52(15), 4585. https://doi.org/10.1088/0031-9155/52/15/015

    Article  Google Scholar 

  20. Bakker, J., Paulides, M., Obdeijn, I.-M., Van Rhoon, G., & Van Dongen, K. (2009). An ultrasound cylindrical phased array for deep heating in the breast: Theoretical design using heterogeneous models. Physics in Medicine and Biology, 54(10), 3201. https://doi.org/10.1088/0031-9155/54/10/016

    Article  CAS  Google Scholar 

  21. Ebbini, E., Umemura, S., Ibbini, M., & Cain, C. (1988). A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 35(5), 561–572. https://doi.org/10.1109/58.8034

    Article  CAS  Google Scholar 

  22. Zhou, Y., Zhai, L., Simmons, R., & Zhong, P. (2006). Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. The Journal of the Acoustical Society of America, 120(2), 676–685. https://doi.org/10.1121/1.2214131

    Article  Google Scholar 

  23. Leão-Neto, P., Cardoso, G. S., Marques, A. S., Andrade, M. A. B., Adamowski, J. C., Pavan, T. Z., Silva, G. T., & Lopes, J. H. (2020). Subwavelength focusing beam and superresolution ultrasonic imaging using a core-shell lens. Physical Review Applied, 13(1), 14062. https://doi.org/10.1103/PhysRevApplied.13.014062

    Article  Google Scholar 

  24. Walker, E. L., Jin, Y., Reyes, D., & Neogi, A. (2020). Sub-wavelength lateral detection of tissue-approximating masses using an ultrasonic metamaterial lens. Nature Communications, 11, 5967. https://doi.org/10.1038/s41467-020-19591-2

    Article  CAS  Google Scholar 

  25. Laureti, S., Hutchins, D. A., Astolfi, L., Watson, R. L., Thomas, P. J., Burrascano, P., Nie, L., Freear, S., Askari, M., Clare, A. T., & Ricci, M. (2020). Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water. Scientific Reports, 10, 10601. https://doi.org/10.1038/s41598-020-67454-z

    Article  CAS  Google Scholar 

  26. Li, C., Yang, Y., Guo, X., Tu, J., Huang, P., Li, F., & Zhang, D. (2017). Enhanced ultrasonic focusing and temperature elevation via a therapeutic ultrasonic transducer with sub-wavelength periodic structure. Applied Physics Letters, 111(5), 053701. https://doi.org/10.1063/1.4990772

    Article  CAS  Google Scholar 

  27. Lin, Z., Guo, X., Tu, J., Cheng, J., Wu, J., Huang, P., & Zhang, D. (2015). A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures. Applied Physics Letters, 107(11), 113505. https://doi.org/10.1063/1.4931139

    Article  CAS  Google Scholar 

  28. Lin, Z., Guo, X., Tu, J., Ma, Q., Wu, J., & Zhang, D. (2015). Acoustic non-diffracting Airy beam. Journal of Applied Physics, 117(10), 104503. https://doi.org/10.1063/1.4914295

    Article  CAS  Google Scholar 

  29. Li, F., Wang, H., Zeng, D., Fan, T., Geng, H., Tu, J., Guo, X., Gong, X., Zhao, C., & Wang, Z. (2013). Sub-wavelength ultrasonic therapy using a spherical cavity transducer with open ends. Applied Physics Letters, 102(20), 204102. https://doi.org/10.1063/1.4807622

    Article  CAS  Google Scholar 

  30. Treeby, B. E., Budisky, J., Wise, E. S., Jaros, J., & Cox, B. T. (2018). Rapid calculation of acoustic fields from arbitrary continuous-wave sources. Journal of the Acoustical Society of America, 143(1), 529–537.

    Article  Google Scholar 

  31. Ebbini, E. S., & Cain, C. A. (1991). A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Transactions on Biomedical Engineering, 38, 634–643.

    Article  CAS  Google Scholar 

  32. Goss, S. A., Frizzell, L. A., Kouzmanoff, J. T., Barich, J. M., & Yang, J. M. (1996). Sparse random ultrasound phased array for focal surgery. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 43(6), 1111–1121. https://doi.org/10.1109/58.542054

    Article  Google Scholar 

  33. Gavrilov, L. R., & Hand, J. W. (2000). A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(1), 125–139. https://doi.org/10.1109/58.818755

    Article  CAS  Google Scholar 

  34. Ma, G., Fan, X., Ma, F., de Rosny, J., Sheng, P., & Fink, M. (2018). Towards anti-causal Green’s function for three-dimensional sub-diffraction focusing. Nature Physics, 14(6), 608.

    Article  CAS  Google Scholar 

  35. Apfel, R. E., & Holland, C. K. (1991). Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Medicine & Biology, 17(2), 179–185. https://doi.org/10.1016/0301-5629(91)90125-g

    Article  CAS  Google Scholar 

  36. Chapelon, J.-Y., Cathignol, D., & Blanc, E. Adjustable focusing therapeutic apparatus with no secondary focusing. US 5,738,635

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhou.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y. Simulation of the Sub-Wavelength Focusing Capability of Cylindrical Concave Phased Array. J. Med. Biol. Eng. 42, 747–756 (2022). https://doi.org/10.1007/s40846-022-00745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00745-0

Keywords

Navigation