Skip to main content

DXA-Based Finite Element Analysis as Support for Pre and Post-operative Evaluation of Hip Arthroplasty

Abstract

Purpose

Bone quality, bone density, implant type and patient anatomy are critical factors for the success of Total Hip Arthroplasty. This study aims to develop a patient-specific FE model based on DXA images to optimise preoperative planning and follow-up.

Methods

Three simulations were carried out for each patient: intact femur, press-fit stem and cemented stem, selecting different prosthesis sizes and types (cemented and cementless). The loads were applied at the centre of the femoral head, whereas constraints were placed on the distal nodes of the femoral shaft to simulate the walking condition. The mechanical response was assessed through micromovements, equivalent strains and strain energy density (SED) calculation.

Results

Models with press-fit prostheses show an average strain greater than 20% compared to the intact femur and 10% compared to models with cemented prostheses. Femoral average strain ranged from about 600 to about 1500 µstrains depending on the patient BMI, BMD and type of implant. The femoral prosthetic models show the highest strain values in Gruen zones located medio-proximally, and lower strains in the lateral regions, mainly for cemented implants. The SED follows the same trend as the average equivalent strain in the Gruen zones.

Conclusion

DXA-based FE analysis appeared to be helpful to access bone strain distribution in prosthetic hip depending on patient anatomy, BMD, and the type of implant. The study shows the utility of equivalent strains and strains energy density in predicting bone loss and growth around the prosthesis and the influence of BMD and BMI in the final results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Shaikh, A. H. (2018). Preoperative planning of total hip arthroplasty. In V. Bagaria (Ed.), Total hip replacement. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.76368

    Chapter  Google Scholar 

  2. Holzwarth, U., & Cotogno, G. (2012). Total hip arthroplasty : State of the art, prospects and challenges. Luxembourg (Luxembourg): Publications Office of the European Union. Retrieved May 31, 2022, from https://publications.jrc.ec.europa.eu/repository/handle/JRC72428

  3. Dick, C., Georgii, J., Burgkart, R., & Westermann, R. (2008). Computational steering for patient-specific implant planning in orthopedics. In VCBM 2008 First EG Workshop on Visual Computing for Biology and Medicine. https://doi.org/10.31729/jnma.634

  4. Reggiani, B., Cristofolini, L., Varini, E., & Viceconti, M. (2007). Predicting the subject-specific primary stability of cementless implants during pre-operative planning: Preliminary validation of subject-specific finite-element models. Journal of Biomechanics, 40(11), 2552–2558. https://doi.org/10.1016/j.jbiomech.2006.10.042

    CAS  Article  PubMed  Google Scholar 

  5. Mario Izzo, G. (2012). Support for total hip replacement surgery: Structures modeling, Gait Data Analysis and Report system. European Journal Translational Myology-Basic Applied Myology, 22(2), 69–121. https://doi.org/10.4081/ejtm.2012.1795

    Article  Google Scholar 

  6. Taylor, M., & Prendergast, P. J. (2015). Four decades of finite element analysis of orthopaedic devices: Where are we now and what are the opportunities? Journal of Biomechanics, 48(5), 767–778. https://doi.org/10.1016/j.jbiomech.2014.12.019

    Article  PubMed  Google Scholar 

  7. Aldieri, A., Terzini, M., Osella, G., Priola, A. M., Angeli, A., Veltri, A., Audenino, A., & Bignardi, C. (2018). Osteoporotic hip fracture prediction: Is T-score-based criterion enough? A hip structural analysis-based model. Journal of Biomechanical Engineering. https://doi.org/10.1115/1.4040586

    Article  PubMed  Google Scholar 

  8. Aldieri, A., Terzini, M., Audenino, A. L., Bignardi, C., Paggiosi, M., Eastell, R., Viceconti, M., & Bhattacharya, P. (2022). Personalised 3D assessment of trochanteric soft tissues improves HIP fracture classification accuracy. Annals of Biomedical Engineering, 50(3), 303–313. https://doi.org/10.1007/s10439-022-02924-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benemerito, I., Griffiths, W., Allsopp, J., Furnass, W., Bhattacharya, P., Li, X., Viceconti, M., & Narracott, A. (2021). Delivering computationally-intensive digital patient applications to the clinic: An exemplar solution to predict femoral bone strength from CT data. Computer Methods and Programs in Biomedicine, 208, 106–200. https://doi.org/10.1016/j.cmpb.2021.106200

    Article  Google Scholar 

  10. Huppertz, A., Radmer, S., Asbach, P., Juran, R., Schwenke, C., Diederichs, G., Viceconti, M., & Sparmann, M. (2011). Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: Radiation exposure and cost analysis. European Journal of Radiology, 78(3), 406–413. https://doi.org/10.1016/j.ejrad.2009.11.024

    Article  PubMed  Google Scholar 

  11. O’Toole, R. V., Jaramaz, B., DiGioia, A. M., Visnic, C. D., & Reid, R. H. (1995). Biomechanics for preoperative planning and surgical simulations in orthopaedics. Computers in Biology and medicine, 25(2), 183–191. https://doi.org/10.1016/0010-4825(94)00043-p

    Article  PubMed  Google Scholar 

  12. Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the hip fracture risk prediction through 2D finite element models from DXA images: Validation against 3D models. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2019.00220

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17–25. https://doi.org/10.1016/j.jmbbm.2016.06.004

    Article  PubMed  Google Scholar 

  14. Ulivieri, F. M., & Rinaudo, L. (2021). Beyond bone mineral density: A new dual X-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index. Frontiers in Medicine. https://doi.org/10.3389/fmed.2020.590139

    Article  PubMed  PubMed Central  Google Scholar 

  15. Colombo, C., Libonati, F., Rinaudo, L., Bellazzi, M., Ulivieri, F. M., & Vergani, L. (2019). A new finite element based parameter to predict bone fracture. PLoS ONE. https://doi.org/10.1371/journal.pone.0225905

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heyland, M., Checa, S., Kendoff, D., & Duda, G. N. (2019). Anatomic grooved stem mitigates strain shielding compared to established total hip arthroplasty stem designs in finite-element models. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-36503-z

    CAS  Article  Google Scholar 

  17. Oshkour, A. A., Osman, N. A. A., Yau, Y. H., Tarlochan, F., & Abas, W. A. B. W. (2013). Design of new generation femoral prostheses using functionally graded materials: A finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(1), 3–17. https://doi.org/10.1177/0954411912459421

    CAS  Article  Google Scholar 

  18. Reimeringer, M., & Nuño, N. (2016). The influence of contact ratio and its location on the primary stability of cementless total hip arthroplasty: A finite element analysis. Journal of Biomechanics, 49(7), 1064–1070. https://doi.org/10.1016/j.jbiomech.2016.02.031

    CAS  Article  PubMed  Google Scholar 

  19. MatWeb L.L.C (2022). Matweb: material property data. Retrieved May 31, 2022, from http://www.matweb.com/

  20. Ramaniraka, N. A., Rakotomanana, L. R., & Leyvraz, P.-F. (2000). The fixation of the cemented femoral component. The Journal of Bone and Joint Surgery British, 82-B(2), 297–303. https://doi.org/10.1302/0301-620x.82b2.0820297

    Article  Google Scholar 

  21. Naylor, K. E., McCloskey, E. V., Eastell, R., & Yang, L. (2013). Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. Journal of Bone and Mineral Research, 28(5), 1014–1021. https://doi.org/10.1002/jbmr.1856

    Article  PubMed  Google Scholar 

  22. Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897–904. https://doi.org/10.1016/S0021-9290(03)00071-X

    Article  PubMed  Google Scholar 

  23. Quevedo Gonzalez, F. J., Reimeringer, M., & Nuno, N. (2017). On the two-dimensional simplification of three-dimensional cementless hip stem numerical models. Journal of Biomechanical Engineering. https://doi.org/10.1115/1.4035368

    Article  PubMed  Google Scholar 

  24. Fernandes, P. R., Folgado, J., & Ruben, R. B. (2004). Shape optimization of a cementless hip stem for a minimum of interface stress and displacement. Computer Methods in Biomechanics and Biomedical Engineering, 7(1), 51–61. https://doi.org/10.1080/10255840410001661637

    CAS  Article  PubMed  Google Scholar 

  25. Janssen, D., van Aken, J., Scheerlinck, T., & Verdonschot, N. (2009). Finite element analysis of the effect of cementing concepts on implant stability and cement fatigue failure. Acta Orthopaedica, 80(3), 319–324. https://doi.org/10.3109/17453670902947465

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wong, A. S., New, A. M. R., Isaacs, G., & Taylor, M. (2005). Effect of bone material properties on the initial stability of a cementless hip stem: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 219(4), 265–275. https://doi.org/10.1243/095441105X34293

    CAS  Article  Google Scholar 

  27. Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of Biomechanics, 38(5), 1155–1163. https://doi.org/10.1016/j.jbiomech.2004.05.022

    CAS  Article  PubMed  Google Scholar 

  28. Chong, D. Y. R., Hansen, U. N., & Amis, A. A. (2010). Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. Journal of Biomechanics, 43(6), 1074–1080. https://doi.org/10.1016/j.jbiomech.2009.12.006

    Article  PubMed  Google Scholar 

  29. Viceconti, M., Monti, L., Muccini, R., Bernakiewicz, M., & Toni, A. (2001). Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clinical Biomechanics, 16(9), 765–775. https://doi.org/10.1016/s0268-0033(01)00052-3

    CAS  Article  PubMed  Google Scholar 

  30. Huiskes, R., Weinans, H. H. J. G., Grootenboer, H. J., Dalstra, M., Fudala, B., & Slooff, T. J. (1987). Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20(11–12), 1135–1150. https://doi.org/10.1016/0021-9290(87)90030-3

    CAS  Article  PubMed  Google Scholar 

  31. Chen, Z., Jin, L., Wang, W., & Zhou, J. (2021). Pre-operative bone mineral density is a predictive factor for excellent early patient-reported outcome measures in cementless total hip arthroplasty using a proximally fixed anatomic stem. A prospective study at two year minimum follow-up: several questions. International Orthopaedics, 45(5), 1383–1384. https://doi.org/10.1007/s00264-020-04886-2

    Article  PubMed  Google Scholar 

  32. Wilkinson, J. M., Hamer, A. J., Rogers, A., Stockley, I., & Eastell, R. (2003). Bone mineral density and biochemical markers of bone turnover in aseptic loosening after total hip arthroplasty. Journal of Orthopaedic Research, 21(4), 691–696. https://doi.org/10.1016/S0736-0266(02)00237-1

    CAS  Article  PubMed  Google Scholar 

  33. Hua, J., & Walker, P. S. (1992). A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement. Journal of Orthopaedic Research, 10(5), 739–744. https://doi.org/10.1002/jor.1100100516

    CAS  Article  PubMed  Google Scholar 

  34. Huiskes, R. (1993). Failed innovation in total hip replacement. Diagnosis and proposals for a cure. Acta Orthopaedica Scandinavica, 64(6), 699–716. https://doi.org/10.3109/17453679308994602

    CAS  Article  PubMed  Google Scholar 

  35. Huiskes, R. (1990). The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clinical Orthopaedics and Related Research, 261, 27–38.

    Article  Google Scholar 

  36. Tecnologie Avanzate T. A. (2022). Bone Strain Index. Retrieved May 31, 2002, from https://tecnologieavanzate.com/en/research-and-development/bone-strain-index/

  37. Zotov, E., Hills, A. F., de Mello, F. L., Aram, P., Sayers, A., Blom, A. W., Wilkinson, J. M., & Kadirkamanathan, V. (2020). JointCalc: A web-based personalised patient decision support tool for joint replacement. International Journal of Medical Informatics. https://doi.org/10.1016/j.ijmedinf.2020.104217

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Massimo Ulivieri.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This study was based on the DXA images of twenty patients randomly chosen from a completely anonymised dataset coming from a previous study [15]. This previous study, entitled “A new finite element based parameter to predict bone fracture” and published on December 5, 2019, has obtained the approval of the Local Ethical Committee: Comitato Etico Milano Area 2. Protocol N 2.0 BQ. 265_2017, 13th June 2017.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuttone, S., Rinaudo, L., Bignardi, C. et al. DXA-Based Finite Element Analysis as Support for Pre and Post-operative Evaluation of Hip Arthroplasty. J. Med. Biol. Eng. 42, 498–507 (2022). https://doi.org/10.1007/s40846-022-00740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00740-5

Keywords

  • DXA
  • Total hip arthroplasty
  • Finite element analyses
  • Patient-specific modelling
  • Prostheses