Schultz, C., Del Tredici, K., & Braak, H. (2004). Neuropathology of Alzheimer’s disease. In R. W. Richter & B. Z. Richter (Eds.), Alzheimer’s disease. Current clinical neurology (pp. 21–31). Humana Press. https://doi.org/10.1007/978-1-59259-661-4_2
Chapter
Google Scholar
Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., et al. (2002). Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Disease & Associated Disorders, 16(4), 203–212.
Article
Google Scholar
Wortmann, M. (2012). Dementia: A global health priority—highlights from an ADI and World Health Organization report. Alzheimer’s Research & Therapy, 4(5), 40.
Article
Google Scholar
Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National Institute on aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & Dementia, 8(1), 1–13.
Article
Google Scholar
DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 1–18.
Article
Google Scholar
De Strooper, B., & Karran, E. (2016). The cellular phase of Alzheimer’s disease. Cell, 64(4), 603–615.
Article
CAS
Google Scholar
Liu, P. P., Xie, Y., Meng, X. Y., & Kang, J. S. (2019). History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduction and Targeted Therapy, 4, 29.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hascup, E. R., & Hascup, K. N. (2020). Toward refining Alzheimer’s disease into overlapping subgroups. Alzheimer’s & Dementia (N Y), 6(1), e12070.
Google Scholar
Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292.
Article
Google Scholar
Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562.
Article
Google Scholar
Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law, I., Morbelli, S., et al. (2020). Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. The Lancet Neurology, 19(11), 951–962.
PubMed
Article
Google Scholar
Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Lammertsma, A. A., Law, I., et al. (2021). Finding our way through the labyrinth of dementia biomarkers. European Journal of Nuclear Medicine and Molecular Imaging, 48, 2320–2324.
PubMed
Article
Google Scholar
Doré, V., Krishnadas, N., Bourgeat, P., Huang, K., Li, S., Burnham, S., et al. (2021). Relationship between amyloid and tau levels and its impact on tau spreading. European Journal of Nuclear Medicine and Molecular Imaging, 48(7), 2225–2232.
PubMed
PubMed Central
Article
CAS
Google Scholar
Villemagne, V. L., Doré, V., Burnham, S. C., Masters, C. L., & Rowe, C. C. (2018). Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nature Reviews Neurology, 14(4), 225–236.
CAS
PubMed
Article
Google Scholar
Nordberg, A., Rinne, J. O., Kadir, A., & Långström, B. (2010). The use of PET in Alzheimer disease. Nature Reviews Neurology, 6(2), 78–87.
CAS
PubMed
Article
Google Scholar
Jack, C. R., Jr. (2012). Alzheimer disease: New concepts on its neurobiology and the clinical role imaging will play. Radiology, 263(2), 344–361.
PubMed
PubMed Central
Article
Google Scholar
Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K. R., Calhoun, V. D., Coleman, R. E., et al. (2013). Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology, 266(2), 583–591.
PubMed
PubMed Central
Article
Google Scholar
Villemagne, V. L., Fodero-Tavoletti, M. T., Pike, K. E., Cappai, R., Masters, C. L., & Rowe, C. C. (2008). The ART of loss: Aβ imaging in the evaluation of Alzheimer’s disease and other dementias. Molecular Neurobiology, 38(1), 1–15.
CAS
PubMed
Article
Google Scholar
Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587–597.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ido, T., Wan, C. N., Casella, V., Fowler, J., Wolf, A., Reivich, M., et al. (1978). Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. Journal of Labelled Compounds and Radiopharmaceuticals, 14(2), 175–183.
CAS
Article
Google Scholar
Sokoloff, L. (1979). Mapping of local cerebral functional activity by measurement of local cerebral glucose utilization with [14C] deoxyglucose. Brain, 102(4), 653–668.
CAS
PubMed
Article
Google Scholar
Yu, S. (2006). Review of 18F-FDG synthesis and quality control. Biomedical imaging and intervention Journal, 2(4), e57.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sokoloff, L., Reivich, M., Kennedy, C., Rosiers, M. D., Patlak, C., Pettigrew, K., et al. (1977). The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat 1. Journal of Neurochemistry, 28(5), 897–916.
CAS
PubMed
Article
Google Scholar
Fowler, J. S., & Ido, T. (2002). Initial and subsequent approach for the synthesis of 18FDG. Seminars in Nuclear Medicine, 32(1), 6–12.
PubMed
Article
Google Scholar
Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(7), 1405–1412.
CAS
Article
Google Scholar
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., et al. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Annals of Neurology, 55(3), 306–319.
CAS
PubMed
Article
Google Scholar
Koole, M., Lewis, D. M., Buckley, C., Nelissen, N., Vandenbulcke, M., Brooks, D. J., et al. (2009). Whole-body biodistribution and radiation dosimetry of 18F-GE067: A radioligand for in vivo brain amyloid imaging. Journal of Nuclear Medicine, 50(5), 818–822.
CAS
PubMed
Article
Google Scholar
Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/203137s008lbl.pdf.
Retrieved January 2, 2022, from https://www.ema.europa.eu/en/medicines/human/EPAR/vizamyl.
Swahn, B.-M., Sandell, J., Pyring, D., Bergh, M., Jeppsson, F., Juréus, A., et al. (2012). Synthesis and evaluation of pyridylbenzofuran, pyridylbenzothiazole and pyridylbenzoxazole derivatives as 18F-PET imaging agents for β-amyloid plaques. Bioorganic & Medicinal Chemistry Letters, 22(13), 4332–4337.
CAS
Article
Google Scholar
Zhang, W., Oya, S., Kung, M.-P., Hou, C., Maier, D. L., & Kung, H. F. (2005). F-18 polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain. Nuclear Medicine and Biology, 32(8), 799–809.
CAS
PubMed
Article
Google Scholar
Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf.
Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm..
Rowe, C. C., Ackerman, U., Browne, W., Mulligan, R., Pike, K. L., O’Keefe, G., et al. (2008). Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: Proof of mechanism. The Lancet Neurology, 7(2), 129–135.
CAS
PubMed
Article
Google Scholar
Choi, S. R., Golding, G., Zhuang, Z., Zhang, W., Lim, N., Hefti, F., et al. (2009). Preclinical properties of 18F-AV-45: A PET agent for Aβ plaques in the brain. Journal of Nuclear Medicine, 50(11), 1887–1894.
CAS
PubMed
Article
Google Scholar
Guo, T., Noble, W., & Hanger, D. P. (2017). Roles of tau protein in health and disease. Acta Neuropathologica, 133(5), 665–704.
CAS
PubMed
PubMed Central
Article
Google Scholar
Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L., & Rowe, C. C. (2015). Tau imaging: Early progress and future directions. The Lancet Neurology, 14(1), 114–124.
PubMed
Article
Google Scholar
Agdeppa, E. D., Kepe, V., Liu, J., Flores-Torres, S., Satyamurthy, N., Petric, A., et al. (2001). Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. Journal of Neuroscience, 21(24), RC189-RC.
Article
Google Scholar
Okamura, N., Suemoto, T., Furumoto, S., Suzuki, M., Shimadzu, H., Akatsu, H., et al. (2005). Quinoline and benzimidazole derivatives: Candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. Journal of Neuroscience, 25(47), 10857–10862.
CAS
PubMed
Article
Google Scholar
Harada, R., Okamura, N., Furumoto, S., Furukawa, K., Ishiki, A., Tomita, N., et al. (2016). 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. Journal of Nuclear Medicine, 57(2), 208–214.
CAS
PubMed
Article
Google Scholar
Jonasson, M., Wall, A., Chiotis, K., Saint-Aubert, L., Wilking, H., Sprycha, M., et al. (2016). Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology. Journal of Nuclear Medicine, 57(4), 574–581.
CAS
PubMed
Article
Google Scholar
Lemoine, L., Gillberg, P.-G., Svedberg, M., Stepanov, V., Jia, Z., Huang, J., et al. (2017). Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimer’s Research & Therapy, 9(1), 1–13.
Article
CAS
Google Scholar
Okamura, N., Harada, R., Ishiki, A., Kikuchi, A., Nakamura, T., & Kudo, Y. (2018). The development and validation of tau PET tracers: Current status and future directions. Clinical and Translational Imaging, 6(4), 305–316.
PubMed
PubMed Central
Article
Google Scholar
Xia, C. F., Arteaga, J., Chen, G., Gangadharmath, U., Gomez, L. F., Kasi, D., et al. (2013). [18F] T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s & Dementia, 9(6), 666–676.
Article
Google Scholar
Zhang, W., Arteaga, J., Cashion, D. K., Chen, G., Gangadharmath, U., Gomez, L. F., et al. (2012). A highly selective and specific PET tracer for imaging of tau pathologies. Journal of Alzheimer’s Disease, 31(3), 601–612.
CAS
PubMed
Article
Google Scholar
Jie, C. V., Treyer, V., Schibli, R., & Mu, L. (2021). Tauvid™: The First FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals, 14(2), 110.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kimura, Y., Ichise, M., Ito, H., Shimada, H., Ikoma, Y., Seki, C., et al. (2015). PET quantification of tau pathology in human brain with 11C-PBB3. Journal of Nuclear Medicine, 56(9), 1359–1365.
CAS
PubMed
Article
Google Scholar
Gobbi, L. C., Knust, H., Körner, M., Honer, M., Czech, C., Belli, S., et al. (2017). Identification of three novel radiotracers for imaging aggregated tau in Alzheimer’s disease with positron emission tomography. Journal of Medicinal Chemistry, 60(17), 7350–7370.
CAS
PubMed
Article
Google Scholar
Kroth, H., Oden, F., Molette, J., Schieferstein, H., Capotosti, F., Mueller, A., et al. (2019). Discovery and preclinical characterization of [18 F] PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. European Journal of Nuclear Medicine and Molecular Imaging, 46(10), 2178–2189.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bohórquez, S. S., Marik, J., Ogasawara, A., Tinianow, J. N., Gill, H. S., Barret, O., et al. (2019). [18 F] GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 46(10), 2077–2089.
Article
CAS
Google Scholar
Walji, A. M., Hostetler, E. D., Selnick, H., Zeng, Z., Miller, P., Bennacef, I., et al. (2016). Discovery of 6-(Fluoro-18 F)-3-(1 H-pyrrolo [2, 3-c] pyridin-1-yl) isoquinolin-5-amine ([18F]-MK-6240): A positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of Medicinal Chemistry, 59(10), 4778–4789.
CAS
PubMed
Article
Google Scholar
Tu, L. N., Morohaku, K., Manna, P. R., Pelton, S. H., Butler, W. R., Stocco, D. M., et al. (2014). Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. Journal of Biological Chemistry, 289(40), 27444–27454.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pasqualetti, G., Brooks, D. J., & Edison, P. (2015). The role of neuroinflammation in dementias. Current Neurology and Neuroscience Reports, 15(4), 17.
PubMed
Article
CAS
Google Scholar
Camsonne, R., Crouzel, C., Comar, D., Mazière, M., Prenant, C., Sastre, J., et al. (1984). Synthesis of 1-(2-chlorophenyl)-N-[11C] methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide (PK 11195): A new ligand for peripheral benzodiazepine receptors. Journal of Labelled Compound Radiopharmaceuticals, 21, 985–991.
CAS
Article
Google Scholar
Damont, A., Boisgard, R., Kuhnast, B., Lemée, F., Raggiri, G., Scarf, A. M., et al. (2011). Synthesis of 6-[18F] fluoro-PBR28, a novel radiotracer for imaging the TSPO 18 kDa with PET. Bioorganic & Medicinal Chemistry Letters, 21(16), 4819–4822.
CAS
Article
Google Scholar
Maeda, J., Suhara, T., Zhang, M. R., Okauchi, T., Yasuno, F., Ikoma, Y., et al. (2004). Novel peripheral benzodiazepine receptor ligand [11C] DAA1106 for PET: An imaging tool for glial cells in the brain. Synapse (New York, N. Y.), 52(4), 283–291.
CAS
Article
Google Scholar
Wang, M., Gao, M., & Zheng, Q.-H. (2012). Fully automated synthesis of PET TSPO radioligands [11C] DAA1106 and [18F] FEDAA1106. Applied Radiation and Isotopes, 70(6), 965–973.
CAS
PubMed
Article
Google Scholar
Wilson, A. A., Garcia, A., Parkes, J., McCormick, P., Stephenson, K. A., Houle, S., et al. (2008). Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nuclear Medicine and Biology, 35(3), 305–314.
CAS
PubMed
Article
Google Scholar
Varrone, A., Oikonen, V., Forsberg, A., Joutsa, J., Takano, A., Solin, O., et al. (2015). Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F] FEMPA in Alzheimer’s disease patients and control subjects. European Journal of Nuclear Medicine and Molecular Imaging, 42(3), 438–446.
PubMed
Article
Google Scholar
James, M. L., Fulton, R. R., Vercoullie, J., Henderson, D. J., Garreau, L., Chalon, S., et al. (2008). DPA-714, a new translocator protein–specific ligand: Synthesis, radiofluorination, and pharmacologic characterization. Journal of Nuclear Medicine, 49(5), 814–822.
CAS
PubMed
Article
Google Scholar
Castellano, S., Taliani, S., Milite, C., Pugliesi, I., Da Pozzo, E., Rizzetto, E., et al. (2012). Synthesis and biological evaluation of 4-phenylquinazoline-2-carboxamides designed as a novel class of potent ligands of the translocator protein. Journal of Medicinal Chemistry, 55(9), 4506–4510.
CAS
PubMed
Article
Google Scholar
Wadsworth, H., Jones, P., Chau, W., Durrant, C., Fouladi, N., Passmore, J., et al. (2012). [18F] GE-180: A novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorganic & Medicinal Chemistry Letters, 22(3), 1308–1313.
CAS
Article
Google Scholar
Vuckovic, Z., Gentry, P. R., Berizzi, A. E., Hirata, K., Varghese, S., Thompson, G., et al. (2019). Crystal structure of the M5 muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences, 116(51), 26001–26007.
CAS
Article
Google Scholar
Bonifazi, A., Yano, H., Del Bello, F., Farande, A., Quaglia, W., Petrelli, R., et al. (2014). Synthesis and biological evaluation of a novel series of heterobivalent muscarinic ligands based on xanomeline and 1-[3-(4-butylpiperidin-1-yl) propyl]-1, 2, 3, 4-tetrahydroquinolin-2-one (77-LH-28-1). Journal of Medicinal Chemistry, 57(21), 9065–9077.
CAS
PubMed
Article
Google Scholar
Buiter, H. J., Leysen, J. E., Schuit, R. C., Fisher, A., Lammertsma, A. A., & Windhorst, A. D. (2012). Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [11C] AF150 (S). Journal of Labelled Compounds and Radiopharmaceuticals, 55(7), 264–273.
CAS
Article
Google Scholar
Budzik, B., Garzya, V., Shi, D., Walker, G., Woolley-Roberts, M., Pardoe, J., et al. (2010). Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Medicinal Chemistry Letters, 1(6), 244–248.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nabulsi, N. B., Holden, D., Zheng, M.-Q., Bois, F., Lin, S.-F., Najafzadeh, S., et al. (2019). Evaluation of 11C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates. Journal of Nuclear Medicine, 60(8), 1147–1153.
CAS
PubMed
Article
Google Scholar
Tong, L., Li, W., Lo, M.M.-C., Gao, X., Wai, J.M.-C., Rudd, M., et al. (2020). Discovery of [11C] MK-6884: A positron emission tomography (PET) imaging agent for the study of M4Muscarinic receptor positive allosteric modulators (PAMs) in neurodegenerative diseases. Journal of Medicinal Chemistry, 63(5), 2411–2425.
CAS
PubMed
Article
Google Scholar
Pichika, R., Easwaramoorthy, B., Collins, D., Christian, B. T., Shi, B., Narayanan, T. K., et al. (2006). Nicotinic α4β2 receptor imaging agents: Part II. Synthesis and biological evaluation of 2-[18F] fluoro-3-[2-((S)-3-pyrrolinyl) methoxy] pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nuclear Medicine and Biology, 33(3), 295–304.
CAS
PubMed
Article
Google Scholar
Sabri, O., Becker, G.-A., Meyer, P. M., Hesse, S., Wilke, S., Graef, S., et al. (2015). First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F] Flubatine. NeuroImage, 118, 199–208.
CAS
PubMed
Article
Google Scholar
Gao, Y., Kuwabara, H., Spivak, C. E., Xiao, Y., Kellar, K., Ravert, H. T., et al. (2008). Discovery of (−)-7-methyl-2-exo-[3′-(6-[18F] fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo [2.2. 1] heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (α4β2-nAChR) with optimal positron emission tomography imaging properties. Journal of Medicinal Chemistry, 51(15), 4751–4764.
CAS
PubMed
Article
Google Scholar
Hashimoto, K., Nishiyama, S., Ohba, H., Matsuo, M., Kobashi, T., Takahagi, M., et al. (2008). [11C] CHIBA-1001 as a novel PET ligand for α7 nicotinic receptors in the brain: A PET study in conscious monkeys. PLoS ONE, 3(9), e3231.
PubMed
PubMed Central
Article
CAS
Google Scholar
Horti, A. G., Gao, Y., Kuwabara, H., Wang, Y., Abazyan, S., Yasuda, R. P., et al. (2014). 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. Journal of Nuclear Medicine, 55(4), 672–677.
CAS
PubMed
Article
Google Scholar
Irie, T., Fukushi, K., Akimoto, Y., Tamagami, H., & Nozaki, T. (1994). Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AchE) in vivo. Nuclear Medicine and Biology, 21(6), 801–808.
CAS
PubMed
Article
Google Scholar
Snyder, S. E., Tluczek, L., Jewett, D. M., Nguyen, T. B., Kuhl, D. E., & Kilbourn, M. R. (1998). Synthesis of 1-[11C] methylpiperidin-4-yl propionate ([11C] PMP) for in vivo measurements of acetylcholinesterase activity. Nuclear Medicine and Biology, 25(8), 751–754.
CAS
PubMed
Article
Google Scholar
Snyder, S. E., Gunupudi, N., Sherman, P. S., Butch, E. R., Skaddan, M. B., Kilbourn, M. R., et al. (2001). Radiolabeled cholinesterase substrates: In vitro methods for determining structure-activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. Journal of Cerebral Blood Flow & Metabolism, 21(2), 132–143.
CAS
Article
Google Scholar
Brittain, R. T., Levy, G. P., & Tyers, M. B. (1969). The neuromuscular blocking action of 2-(4-phenylpiperidino) cyclohexanol (AH 5183). European Journal of Pharmacology, 8(1), 93–99.
CAS
PubMed
Article
Google Scholar
Mulholland, G. K., Wieland, D. M., Kilbourn, M. R., Frey, K. A., Sherman, P. S., Carey, J. E., et al. (1998). [18F] fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse (New York, N. Y.), 30(3), 263–274.
CAS
Article
Google Scholar
Tu, Z., Zhang, X., Jin, H., Yue, X., Padakanti, P. K., Yu, L., et al. (2015). Synthesis and biological characterization of a promising F-18 PET tracer for vesicular acetylcholine transporter. Bioorganic & Medicinal Chemistry, 23(15), 4699–4709.
CAS
Article
Google Scholar
Boschi, F., Camps, P., Comes-Franchini, M., Muñoz-Torrero, D., Ricci, A., & Sánchez, L. (2005). A synthesis of levetiracetam based on (S)-N-phenylpantolactam as a chiral auxiliary. Tetrahedron Asymmetry, 16(22), 3739–3745.
CAS
Article
Google Scholar
Warnier, C., Lemaire, C., Becker, G., Zaragoza, G., Giacomelli, F., Jl, A., et al. (2016). Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand ([18F] UCB-H). Journal of Medicinal Chemistry, 59(19), 8955–8966.
CAS
PubMed
Article
Google Scholar
Estrada, S., Lubberink, M., Thibblin, A., Sprycha, M., Buchanan, T., Mestdagh, N., et al. (2016). [11C] UCB-A, a novel PET tracer for synaptic vesicle protein 2 A. Nuclear Medicine and Biology, 43(6), 325–332.
CAS
PubMed
Article
Google Scholar
Nabulsi, N. B., Mercier, J., Holden, D., Carré, S., Najafzadeh, S., Vandergeten, M.-C., et al. (2016). Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. Journal of Nuclear Medicine, 57(5), 777–784.
CAS
PubMed
Article
Google Scholar
Li, S., Cai, Z., Wu, X., Holden, D., Pracitto, R., Kapinos, M., et al. (2018). Synthesis and in vivo evaluation of a novel PET radiotracer for imaging of synaptic vesicle glycoprotein 2A (SV2A) in nonhuman primates. ACS Chemical Neuroscience, 10(3), 1544–1554.
PubMed
Article
CAS
Google Scholar
Cai, Z., Li, S., Finnema, S., Lin, S.-f, Zhang, W., Holden, D., et al. (2017). Imaging synaptic density with novel 18F-labeled radioligands for synaptic vesicle protein-2A (SV2A): Synthesis and evaluation in nonhuman primates. Journal of Nuclear Medicine, 58(supplement 1), 547.
Google Scholar
Trump, L., Lemos, A., Jrm, J., Pasau, P., Bnd, L., Mercier, J., et al. (2020). Development of a general automated flow photoredox 18F-difluoromethylation of N-heteroaromatics in an AllinOne synthesizer. Organic Process Research & Development, 24(5), 734–744.
CAS
Article
Google Scholar
Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.
PubMed
Article
Google Scholar
Thientunyakit, T., Sethanandha, C., Muangpaisan, W., & Minoshima, S. (2021). 3D-SSP analysis for amyloid brain PET imaging using 18F-florbetapir in patients with Alzheimer’s dementia and mild cognitive impairment. Medical Journal of Malaysia, 76(4), 493–501.
CAS
PubMed
Google Scholar
Thientunyakit, T., Thongpraparn, T., Sethanandha, C., Yamada, T., Kimura, Y., Muangpaisan, W., et al. (2021). Relationship between F-18 florbetapir uptake in occipital lobe and neurocognitive performance in Alzheimer’s disease. Japanese Journal of Radiology, 39(10), 984–993.
CAS
PubMed
Article
Google Scholar
Thientunyakit, T., Sethanandha, C., Muangpaisan, W., Chawalparit, O., Arunrungvichian, K., Siriprapa, T., et al. (2018). Implementation of [18F]-labeled amyloid brain PET imaging biomarker in the diagnosis of Alzheimer’s disease: First-hand experience in Thailand. Nuclear Medicine Communications, 39(2), 186–192.
PubMed
Article
Google Scholar
Thientunyakit, T., Sethanandha, C., Muangpaisan, W., Chawalparit, O., Arunrungvichian, K., Siriprapa, T., et al. (2020). Relationships between amyloid levels, glucose metabolism, morphologic changes in the brain and clinical status of patients with Alzheimer’s disease. Annals of Nuclear Medicine, 34(5), 337–348.
CAS
PubMed
Article
Google Scholar
Burnham, S. C., Laws, S. M., Budgeon, C. A., Doré, V., Porter, T., Bourgeat, P., et al. (2020). Impact of APOE-ε4 carriage on the onset and rates of neocortical Aβ-amyloid deposition. Neurobiology of Aging, 95, 46–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., et al. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. The Lancet Neurology, 12(4), 357–367.
CAS
PubMed
Article
Google Scholar
Braak, H., Braak, E., Bohl, J., & Reintjes, R. (1996). Age, neurofibrillary changes, Aβ-amyloid and the onset of Alzheimer’s disease. Neuroscience Letters, 210(2), 87–90.
CAS
PubMed
Article
Google Scholar
Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., et al. (2007). Imaging β-amyloid burden in aging and dementia. Neurology, 68(20), 1718–1725.
CAS
PubMed
Article
Google Scholar
Rowe, C. C., & Villemagne, V. L. (2013). Brain amyloid imaging. Journal of Nuclear Medicine Technology, 41(1), 11–18.
PubMed
Google Scholar
Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D., Sr., Jagust, W. J., et al. (2015). The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & Dementia, 11(1), 1-15.e4.
Article
Google Scholar
Rowe, C. C., Jones, G., Doré, V., Pejoska, S., Margison, L., Mulligan, R. S., et al. (2016). Standardized expression of 18F-NAV4694 and 11C-PiB β-amyloid PET results with the Centiloid Scale. Journal of Nuclear Medicine, 57(8), 1233–1237.
CAS
PubMed
Article
Google Scholar
Bischof, G. N., Bartenstein, P., Barthel, H., van Berckel, B. N., Doré, V., van Eimeren, T., et al. (2021). Towards a universal readout for fluorine-18 labelled amyloid tracers: The CAPTAINs Study. Journal of Nuclear Medicine, 62(7), 999–1005.
CAS
PubMed
Article
Google Scholar
Amadoru, S., Doré, V., McLean, C. A., Hinton, F., Shepherd, C. E., Halliday, G. M., et al. (2020). Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer’s disease. Alzheimer’s Research & Therapy, 12(1), 1–8.
Article
CAS
Google Scholar
Schöll, M., Lockhart, S. N., Schonhaut, D. R., O’Neil, J. P., Janabi, M., Ossenkoppele, R., et al. (2016). PET imaging of tau deposition in the aging human brain. Neuron, 89(5), 971–982.
PubMed
PubMed Central
Article
CAS
Google Scholar
Groot, C., Doré, V., Robertson, J., Burnham, S. C., Savage, G., Ossenkoppele, R., et al. (2021). Mesial temporal tau is related to worse cognitive performance and greater neocortical tau load in amyloid-β–negative cognitively normal individuals. Neurobiology of Aging, 97, 41–48.
CAS
PubMed
Article
Google Scholar
Murray, M. E., Graff-Radford, N. R., Ross, O. A., Petersen, R. C., Duara, R., & Dickson, D. W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. The Lancet Neurology, 10(9), 785–796.
PubMed
PubMed Central
Article
Google Scholar
Ossenkoppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., Baker, S. L., et al. (2016). Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain, 139(5), 1551–1567.
PubMed
PubMed Central
Article
Google Scholar
Ossenkoppele, R., Lyoo, C. H., Sudre, C. H., van Westen, D., Cho, H., Ryu, Y. H., et al. (2020). Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimer’s & Dementia, 16(2), 335–344.
Article
Google Scholar
Hanseeuw, B. J., Betensky, R. A., Jacobs, H. I., Schultz, A. P., Sepulcre, J., Becker, J. A., et al. (2019). Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurology, 76(8), 915–924.
PubMed
PubMed Central
Article
Google Scholar
Chiotis, K., Saint-Aubert, L., Rodriguez-Vieitez, E., Leuzy, A., Almkvist, O., Savitcheva, I., et al. (2018). Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Molecular Psychiatry, 23(7), 1666–1673.
CAS
PubMed
Article
Google Scholar
Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathologica, 128(6), 755–766.
CAS
PubMed
PubMed Central
Article
Google Scholar
Josephs, K. A., Murray, M. E., Tosakulwong, N., Whitwell, J. L., Knopman, D. S., Machulda, M. M., et al. (2017). Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: A clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathologica, 133(5), 705–715.
CAS
PubMed
PubMed Central
Article
Google Scholar
Betthauser, T. J., Cody, K. A., Zammit, M. D., Murali, D., Converse, A. K., Barnhart, T. E., et al. (2019). In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. Journal of Nuclear Medicine, 60(1), 93–99.
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith, R., Schöll, M., Leuzy, A., Jögi, J., Ohlsson, T., Strandberg, O., et al. (2020). Head-to-head comparison of tau positron emission tomography tracers [18F] flortaucipir and [18F] RO948. European Journal of Nuclear Medicine and Molecular Imaging, 47(2), 342–354.
PubMed
Article
CAS
Google Scholar
Leuzy, A., Chiotis, K., Lemoine, L., Gillberg, P.-G., Almkvist, O., Rodriguez-Vieitez, E., et al. (2019). Tau PET imaging in neurodegenerative tauopathies—still a challenge. Molecular Psychiatry, 24(8), 1112–1134.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ikonomovic, M. D., Abrahamson, E. E., Price, J. C., Mathis, C. A., & Klunk, W. E. (2016). [F-18] AV-1451 PET retention in choroid plexus: More than “off-target” binding. Annals of Neurology, 80(2), 307–308.
PubMed
PubMed Central
Article
Google Scholar
Villemagne, V. L., Lopresti, B. J., Doré, V., Tudorascu, D., Ikonomovic, M. D., Burnham, S., et al. (2021). What is T+? A gordian knot of tracers, thresholds, and topographies. Journal of Nuclear Medicine, 62(5), 614–619.
PubMed
Article
CAS
Google Scholar
Minoshima, S., Mosci, K., Cross, D., & Thientunyakit, T. (2021). Brain [F-18] FDG PET for Clinical Dementia Workup: Differential diagnosis of Alzheimer’s Disease and other types of dementing disorders. Seminars in Nuclear Medicine, 51(3), 230–240.
PubMed
Article
Google Scholar
Minoshima, S., Frey, K. A., Koeppe, R. A., Foster, N. L., & Kuhl, D. E. (1995). A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. Journal of Nuclear Medicine, 36(7), 1238–1248.
CAS
PubMed
Google Scholar
Sakamoto, S., Ishii, K., Sasaki, M., Hosaka, K., Mori, T., Matsui, M., et al. (2002). Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. Journal of The Neurological Sciences, 200(1–2), 27–32.
CAS
PubMed
Article
Google Scholar
Mosconi, L., Tsui, W. H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., et al. (2008). Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. Journal of Nuclear Medicine, 49(3), 390–398.
PubMed
Article
Google Scholar
Morris, E., Chalkidou, A., Hammers, A., Peacock, J., Summers, J., & Keevil, S. (2016). Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging, 43(2), 374–385.
CAS
PubMed
Article
Google Scholar
Brendel, M., Schnabel, J., Schönecker, S., Wagner, L., Brendel, E., Meyer-Wilmes, J., et al. (2017). Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 44(13), 2239–2248.
PubMed
Article
Google Scholar
Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yokokura, M., Mori, N., Yagi, S., Yoshikawa, E., Kikuchi, M., Yoshihara, Y., et al. (2011). In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 38(2), 343–351.
CAS
PubMed
Article
Google Scholar
Geloso, M. C., Corvino, V., Marchese, E., Serrano, A., Michetti, F., & D’Ambrosi, N. (2017). The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Frontiers in Aging Neuroscience, 9, 242.
PubMed
PubMed Central
Article
CAS
Google Scholar
Stefaniak, J., & O’Brien, J. (2016). Imaging of neuroinflammation in dementia: A review. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 21–28.
Google Scholar
Song, Y. S. (2019). Perspectives in TSPO PET imaging for neurologic diseases. Nuclear Medicine and Molecular Imaging, 53(6), 382–385.
PubMed
PubMed Central
Article
Google Scholar
Wilcock, G. K., Esiri, M. M., Bowen, D. M., & Smith, C. C. (1982). Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. Journal of the Neurological Sciences, 57(2–3), 407–417.
CAS
PubMed
Article
Google Scholar
Bell, K. F., Ducatenzeiler, A., Ribeiro-da-Silva, A., Duff, K., Bennett, D. A., & Cuello, A. C. (2006). The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiology of Aging, 27(11), 1644–1657.
CAS
PubMed
Article
Google Scholar
Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s disease: Targeting the cholinergic system. Current Neuropharmacology, 14(1), 101–115.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuhl, D. E., Minoshima, S., Frey, K. A., Foster, N. L., Kilbourn, M. R., & Koeppe, R. A. (2000). Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Annals of Neurology, 48(3), 391–395.
CAS
PubMed
Article
Google Scholar
Aghourian, M., Legault-Denis, C., Soucy, J., Rosa-Neto, P., Gauthier, S., Kostikov, A., et al. (2017). Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Molecular Psychiatry, 22(11), 1531–1538.
CAS
PubMed
Article
Google Scholar
Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M.-A., Spreng, R. N., Alzheimer’s Disease Neuroimaging Initiative. (2018). Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Reports, 24(1), 38–46.
CAS
PubMed
Article
Google Scholar
Okada, H., Ouchi, Y., Ogawa, M., Futatsubashi, M., Saito, Y., Yoshikawa, E., et al. (2013). Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain, 136(10), 3004–3017.
PubMed
Article
Google Scholar
Robinson, J. L., Molina-Porcel, L., Corrada, M. M., Raible, K., Lee, E. B., Lee, V.M.-Y., et al. (2014). Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the oldest-old. Brain, 137(9), 2578–2587.
PubMed
PubMed Central
Article
Google Scholar
Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76, 1–8.
CAS
PubMed
Article
Google Scholar
O’Dell, R. S., Mecca, A. P., Chen, M.-K., Naganawa, M., Toyonaga, T., Lu, Y., et al. (2021). Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: A PET imaging study with [11C] UCB-J. Alzheimer’s Research & Therapy, 13(1), 1–12.
Article
CAS
Google Scholar
Chen, M.-K., Mecca, A. P., Naganawa, M., Finnema, S. J., Toyonaga, T., Lin, S.-f, et al. (2018). Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurology, 75(10), 1215–1224.
PubMed
PubMed Central
Article
Google Scholar
De Wilde, M. C., Overk, C. R., Sijben, J. W., & Masliah, E. (2016). Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimer’s & Dementia, 12(6), 633–644.
Article
Google Scholar
Mecca, A. P., Chen, M. K., O’Dell, R. S., Naganawa, M., Toyonaga, T., Godek, T. A., et al. (2020). In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimer’s & Dementia, 16(7), 974–982.
Article
Google Scholar
Vanhaute, H., Ceccarini, J., Michiels, L., Koole, M., Sunaert, S., Lemmens, R., et al. (2020). In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology, 95(5), e545–e553.
CAS
PubMed
Article
Google Scholar
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. The Lancet, 367(9518), 1262–1270.
Article
Google Scholar
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.
CAS
PubMed
Article
Google Scholar
Small, G. W., Kepe, V., Ercoli, L. M., Siddarth, P., Bookheimer, S. Y., Miller, K. J., et al. (2006). PET of brain amyloid and tau in mild cognitive impairment. New England Journal of Medicine, 355(25), 2652–2663.
CAS
PubMed
Article
Google Scholar
Doecke, J. D., Ward, L., Burnham, S. C., Villemagne, V. L., Li, Q.-X., Collins, S., et al. (2020). Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging. Alzheimer’s Research & Therapy, 12(1), 1–10.
Article
CAS
Google Scholar
Okello, A., Koivunen, J., Edison, P., Archer, H., Turkheimer, F., Någren, Ku., et al. (2009). Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology, 73(10), 754–760.
CAS
PubMed
PubMed Central
Article
Google Scholar
Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A., et al. (2008). PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiology of Aging, 29(10), 1456–1465.
CAS
PubMed
Article
Google Scholar
Doraiswamy, P. M., Sperling, R., Johnson, K., Reiman, E. M., Wong, T., Sabbagh, M., et al. (2014). Florbetapir F 18 amyloid PET and 36-month cognitive decline: A prospective multicenter study. Molecular Psychiatry, 19(9), 1044–1051.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pontecorvo, M. J., Devous, M. D., Sr., Navitsky, M., Lu, M., Salloway, S., Schaerf, F. W., et al. (2017). Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain, 140(3), 748–763.
PubMed
PubMed Central
Google Scholar
Price, J. L., Ko, A. I., Wade, M. J., Tsou, S. K., McKeel, D. W., & Morris, J. C. (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Archives of Neurology, 58(9), 1395–1402.
CAS
PubMed
Article
Google Scholar
Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., et al. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218.
PubMed
Article
Google Scholar
Chetelat, G., Desgranges, B., De La Sayette, V., Viader, F., Eustache, F., & Baron, J.-C. (2003). Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology, 60(8), 1374–1377.
CAS
PubMed
Article
Google Scholar
Mallik, A., Drzezga, A., & Minoshima, S. (2017). Clinical amyloid imaging. Seminars in Nuclear Medicine, 47(1), 31–43.
PubMed
Article
Google Scholar
Sabri, O., Meyer, P. M., Gräf, S., Hesse, S., Wilke, S., Becker, G.-A., et al. (2018). Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain, 141(6), 1840–1854.
PubMed
PubMed Central
Article
Google Scholar
Panza, F., Solfrizzi, V., Frisardi, V., Imbimbo, B. P., Capurso, C., D’Introno, A., et al. (2009). Beyond the neurotransmitter-focused approach in treating Alzheimer’s disease: Drugs targeting β-amyloid and tau protein. Aging Clinical and Experimental Research, 21(6), 386–406.
CAS
PubMed
Article
Google Scholar
Zhang, F., Zhong, R.-j, Cheng, C., Li, S., & Le, W.-d. (2021). New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 42(9), 1382–1389.
CAS
PubMed
Article
Google Scholar
Schmidt, M. E., Chiao, P., Klein, G., Matthews, D., Thurfjell, L., Cole, P. E., et al. (2015). The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimer’s & Dementia, 11(9), 1050–1068.
Article
Google Scholar
Tzimopoulou, S., Cunningham, V. J., Nichols, T. E., Searle, G., Bird, N. P., Mistry, P., et al. (2010). A multi-center randomized proof-of-concept clinical trial applying [18F] FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(4), 1241–1256.
CAS
PubMed
Article
Google Scholar
Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69(1), 29–38.
PubMed
Article
Google Scholar
Smith, G. S., Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Diaconescu, A. O., Workman, C. I., et al. (2012). Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Archives of Neurology, 69(9), 1141–1148.
PubMed
Article
Google Scholar
Teipel, S. J., Drzezga, A., Bartenstein, P., Möller, H.-J., Schwaiger, M., & Hampel, H. (2006). Effects of donepezil on cortical metabolic response to activation during 18FDG-PET in Alzheimer’s disease: A double-blind cross-over trial. Psychopharmacology (Berl), 187(1), 86–94.
CAS
Article
Google Scholar
Mega, M. S., Dinov, I. D., Porter, V., Chow, G., Reback, E., Davoodi, P., et al. (2005). Metabolic patterns associated with the clinical response to galantamine therapy: A fludeoxyglucose f 18 positron emission tomographic study. Archives of Neurology, 62(5), 721–728.
PubMed
Article
Google Scholar
James, M. L., Belichenko, N. P., Shuhendler, A. J., Hoehne, A., Andrews, L. E., Condon, C., et al. (2017). [(18)F]GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer’s disease. Theranostics, 7(6), 1422–1436.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bao, W., Xie, F., Zuo, C., Guan, Y., & Huang, Y. H. (2021). PET neuroimaging of Alzheimer’s disease: Radiotracers and their utility in clinical research. Frontiers in Aging Neuroscience, 13, 114.
Article
CAS
Google Scholar
Bateman, R. J., Aisen, P. S., De Strooper, B., Fox, N. C., Lemere, C. A., Ringman, J. M., et al. (2011). Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Research & Therapy, 3(1), 1–13.
Article
Google Scholar
Harrison, T. M., La Joie, R., Maass, A., Baker, S. L., Swinnerton, K., Fenton, L., et al. (2019). Longitudinal tau accumulation and atrophy in aging and Alzheimer disease. Annals of Neurology, 85(2), 229–240.
CAS
PubMed
PubMed Central
Article
Google Scholar
Duyckaerts, C., Braak, H., Brion, J.-P., Buée, L., Del Tredici, K., Goedert, M., et al. (2015). PART is part of Alzheimer disease. Acta Neuropathologica, 129(5), 749–756.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jack, C. R., Knopman, D. S., Chételat, G., Dickson, D., Fagan, A. M., Frisoni, G. B., et al. (2016). Suspected non-Alzheimer disease pathophysiology—concept and controversy. Nature Reviews Neurology, 12(2), 117–124.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mosconi, L., De Santi, S., Brys, M., Tsui, W. H., Pirraglia, E., Glodzik-Sobanska, L., et al. (2008). Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biological Psychiatry, 63(6), 609–618.
CAS
PubMed
Article
Google Scholar
Mosconi, L., Sorbi, S., de Leon, M. J., Li, Y., Nacmias, B., Myoung, P. S., et al. (2006). Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. Journal of Nuclear Medicine, 47(11), 1778–1786.
CAS
PubMed
Google Scholar