Skip to main content

Molecular PET Imaging in Alzheimer’s Disease

Abstract

Purpose

The complexities of pathological changes in Alzheimer’s disease (AD) and their relationships with associated risk factors and clinical symptoms, and the development of disease-modifying therapy or preventive intervention for AD are being intensively investigated. The emerging advances in brain positron emission tomography (PET) imaging allow for in vivo visualization and quantitation of specific neurochemical and molecular pathophysiologic changes in the brain tissue. This review is focused on the recent advances in molecular PET imaging of the brain and its clinical applications in AD.

Methods

The development in PET radiopharmaceuticals targeting brain glucose metabolism, amyloid accumulation, tau protein aggregation, neuroinflammation, acetylcholine system, and synaptic density are discussed along with their potential clinical applications in AD.

Results

PET imaging studies can provide diagnostic and prognostic biomarkers of AD, as well as for selection and monitoring of novel therapies. Given the complexity and potential overlapping pathologies and comorbidities, a single biomarker can neither provide the diagnostic certainty required for early detection of AD nor the identification of presymptomatic at-risk individuals. Therefore, multimodal studies are required to better understand the relationships between different biomarkers, answer the controversial issues, and incorporate new diagnostic criteria for the various stages in the continuum of AD.

Conclusion

Molecular PET imaging studies have significant roles in the clinical practice and the clinical trials of novel therapeutic agents in AD. However, standardization and validation across multiple participating sites are still required for the subsequent transition from clinical research into clinical practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Schultz, C., Del Tredici, K., & Braak, H. (2004). Neuropathology of Alzheimer’s disease. In R. W. Richter & B. Z. Richter (Eds.), Alzheimer’s disease. Current clinical neurology (pp. 21–31). Humana Press. https://doi.org/10.1007/978-1-59259-661-4_2

    Chapter  Google Scholar 

  2. Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., et al. (2002). Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Disease & Associated Disorders, 16(4), 203–212.

    Article  Google Scholar 

  3. Wortmann, M. (2012). Dementia: A global health priority—highlights from an ADI and World Health Organization report. Alzheimer’s Research & Therapy, 4(5), 40.

    Article  Google Scholar 

  4. Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National Institute on aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & Dementia, 8(1), 1–13.

    Article  Google Scholar 

  5. DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 1–18.

    Article  Google Scholar 

  6. De Strooper, B., & Karran, E. (2016). The cellular phase of Alzheimer’s disease. Cell, 64(4), 603–615.

    Article  CAS  Google Scholar 

  7. Liu, P. P., Xie, Y., Meng, X. Y., & Kang, J. S. (2019). History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduction and Targeted Therapy, 4, 29.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Hascup, E. R., & Hascup, K. N. (2020). Toward refining Alzheimer’s disease into overlapping subgroups. Alzheimer’s & Dementia (N Y), 6(1), e12070.

    Google Scholar 

  9. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292.

    Article  Google Scholar 

  10. Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562.

    Article  Google Scholar 

  11. Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law, I., Morbelli, S., et al. (2020). Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. The Lancet Neurology, 19(11), 951–962.

    PubMed  Article  Google Scholar 

  12. Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Lammertsma, A. A., Law, I., et al. (2021). Finding our way through the labyrinth of dementia biomarkers. European Journal of Nuclear Medicine and Molecular Imaging, 48, 2320–2324.

    PubMed  Article  Google Scholar 

  13. Doré, V., Krishnadas, N., Bourgeat, P., Huang, K., Li, S., Burnham, S., et al. (2021). Relationship between amyloid and tau levels and its impact on tau spreading. European Journal of Nuclear Medicine and Molecular Imaging, 48(7), 2225–2232.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Villemagne, V. L., Doré, V., Burnham, S. C., Masters, C. L., & Rowe, C. C. (2018). Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nature Reviews Neurology, 14(4), 225–236.

    CAS  PubMed  Article  Google Scholar 

  15. Nordberg, A., Rinne, J. O., Kadir, A., & Långström, B. (2010). The use of PET in Alzheimer disease. Nature Reviews Neurology, 6(2), 78–87.

    CAS  PubMed  Article  Google Scholar 

  16. Jack, C. R., Jr. (2012). Alzheimer disease: New concepts on its neurobiology and the clinical role imaging will play. Radiology, 263(2), 344–361.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K. R., Calhoun, V. D., Coleman, R. E., et al. (2013). Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology, 266(2), 583–591.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Villemagne, V. L., Fodero-Tavoletti, M. T., Pike, K. E., Cappai, R., Masters, C. L., & Rowe, C. C. (2008). The ART of loss: Aβ imaging in the evaluation of Alzheimer’s disease and other dementias. Molecular Neurobiology, 38(1), 1–15.

    CAS  PubMed  Article  Google Scholar 

  19. Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587–597.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Ido, T., Wan, C. N., Casella, V., Fowler, J., Wolf, A., Reivich, M., et al. (1978). Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. Journal of Labelled Compounds and Radiopharmaceuticals, 14(2), 175–183.

    CAS  Article  Google Scholar 

  21. Sokoloff, L. (1979). Mapping of local cerebral functional activity by measurement of local cerebral glucose utilization with [14C] deoxyglucose. Brain, 102(4), 653–668.

    CAS  PubMed  Article  Google Scholar 

  22. Yu, S. (2006). Review of 18F-FDG synthesis and quality control. Biomedical imaging and intervention Journal, 2(4), e57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Sokoloff, L., Reivich, M., Kennedy, C., Rosiers, M. D., Patlak, C., Pettigrew, K., et al. (1977). The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat 1. Journal of Neurochemistry, 28(5), 897–916.

    CAS  PubMed  Article  Google Scholar 

  24. Fowler, J. S., & Ido, T. (2002). Initial and subsequent approach for the synthesis of 18FDG. Seminars in Nuclear Medicine, 32(1), 6–12.

    PubMed  Article  Google Scholar 

  25. Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(7), 1405–1412.

    CAS  Article  Google Scholar 

  26. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., et al. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Annals of Neurology, 55(3), 306–319.

    CAS  PubMed  Article  Google Scholar 

  27. Koole, M., Lewis, D. M., Buckley, C., Nelissen, N., Vandenbulcke, M., Brooks, D. J., et al. (2009). Whole-body biodistribution and radiation dosimetry of 18F-GE067: A radioligand for in vivo brain amyloid imaging. Journal of Nuclear Medicine, 50(5), 818–822.

    CAS  PubMed  Article  Google Scholar 

  28. Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/203137s008lbl.pdf.

  29. Retrieved January 2, 2022, from https://www.ema.europa.eu/en/medicines/human/EPAR/vizamyl.

  30. Swahn, B.-M., Sandell, J., Pyring, D., Bergh, M., Jeppsson, F., Juréus, A., et al. (2012). Synthesis and evaluation of pyridylbenzofuran, pyridylbenzothiazole and pyridylbenzoxazole derivatives as 18F-PET imaging agents for β-amyloid plaques. Bioorganic & Medicinal Chemistry Letters, 22(13), 4332–4337.

    CAS  Article  Google Scholar 

  31. Zhang, W., Oya, S., Kung, M.-P., Hou, C., Maier, D. L., & Kung, H. F. (2005). F-18 polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain. Nuclear Medicine and Biology, 32(8), 799–809.

    CAS  PubMed  Article  Google Scholar 

  32. Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf.

  33. Retrieved January 2, 2022, from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm..

  34. Rowe, C. C., Ackerman, U., Browne, W., Mulligan, R., Pike, K. L., O’Keefe, G., et al. (2008). Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: Proof of mechanism. The Lancet Neurology, 7(2), 129–135.

    CAS  PubMed  Article  Google Scholar 

  35. Choi, S. R., Golding, G., Zhuang, Z., Zhang, W., Lim, N., Hefti, F., et al. (2009). Preclinical properties of 18F-AV-45: A PET agent for Aβ plaques in the brain. Journal of Nuclear Medicine, 50(11), 1887–1894.

    CAS  PubMed  Article  Google Scholar 

  36. Guo, T., Noble, W., & Hanger, D. P. (2017). Roles of tau protein in health and disease. Acta Neuropathologica, 133(5), 665–704.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L., & Rowe, C. C. (2015). Tau imaging: Early progress and future directions. The Lancet Neurology, 14(1), 114–124.

    PubMed  Article  Google Scholar 

  38. Agdeppa, E. D., Kepe, V., Liu, J., Flores-Torres, S., Satyamurthy, N., Petric, A., et al. (2001). Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. Journal of Neuroscience, 21(24), RC189-RC.

    Article  Google Scholar 

  39. Okamura, N., Suemoto, T., Furumoto, S., Suzuki, M., Shimadzu, H., Akatsu, H., et al. (2005). Quinoline and benzimidazole derivatives: Candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. Journal of Neuroscience, 25(47), 10857–10862.

    CAS  PubMed  Article  Google Scholar 

  40. Harada, R., Okamura, N., Furumoto, S., Furukawa, K., Ishiki, A., Tomita, N., et al. (2016). 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. Journal of Nuclear Medicine, 57(2), 208–214.

    CAS  PubMed  Article  Google Scholar 

  41. Jonasson, M., Wall, A., Chiotis, K., Saint-Aubert, L., Wilking, H., Sprycha, M., et al. (2016). Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology. Journal of Nuclear Medicine, 57(4), 574–581.

    CAS  PubMed  Article  Google Scholar 

  42. Lemoine, L., Gillberg, P.-G., Svedberg, M., Stepanov, V., Jia, Z., Huang, J., et al. (2017). Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimer’s Research & Therapy, 9(1), 1–13.

    Article  CAS  Google Scholar 

  43. Okamura, N., Harada, R., Ishiki, A., Kikuchi, A., Nakamura, T., & Kudo, Y. (2018). The development and validation of tau PET tracers: Current status and future directions. Clinical and Translational Imaging, 6(4), 305–316.

    PubMed  PubMed Central  Article  Google Scholar 

  44. Xia, C. F., Arteaga, J., Chen, G., Gangadharmath, U., Gomez, L. F., Kasi, D., et al. (2013). [18F] T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s & Dementia, 9(6), 666–676.

    Article  Google Scholar 

  45. Zhang, W., Arteaga, J., Cashion, D. K., Chen, G., Gangadharmath, U., Gomez, L. F., et al. (2012). A highly selective and specific PET tracer for imaging of tau pathologies. Journal of Alzheimer’s Disease, 31(3), 601–612.

    CAS  PubMed  Article  Google Scholar 

  46. Jie, C. V., Treyer, V., Schibli, R., & Mu, L. (2021). Tauvid™: The First FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals, 14(2), 110.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Kimura, Y., Ichise, M., Ito, H., Shimada, H., Ikoma, Y., Seki, C., et al. (2015). PET quantification of tau pathology in human brain with 11C-PBB3. Journal of Nuclear Medicine, 56(9), 1359–1365.

    CAS  PubMed  Article  Google Scholar 

  48. Gobbi, L. C., Knust, H., Körner, M., Honer, M., Czech, C., Belli, S., et al. (2017). Identification of three novel radiotracers for imaging aggregated tau in Alzheimer’s disease with positron emission tomography. Journal of Medicinal Chemistry, 60(17), 7350–7370.

    CAS  PubMed  Article  Google Scholar 

  49. Kroth, H., Oden, F., Molette, J., Schieferstein, H., Capotosti, F., Mueller, A., et al. (2019). Discovery and preclinical characterization of [18 F] PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. European Journal of Nuclear Medicine and Molecular Imaging, 46(10), 2178–2189.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Bohórquez, S. S., Marik, J., Ogasawara, A., Tinianow, J. N., Gill, H. S., Barret, O., et al. (2019). [18 F] GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 46(10), 2077–2089.

    Article  CAS  Google Scholar 

  51. Walji, A. M., Hostetler, E. D., Selnick, H., Zeng, Z., Miller, P., Bennacef, I., et al. (2016). Discovery of 6-(Fluoro-18 F)-3-(1 H-pyrrolo [2, 3-c] pyridin-1-yl) isoquinolin-5-amine ([18F]-MK-6240): A positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of Medicinal Chemistry, 59(10), 4778–4789.

    CAS  PubMed  Article  Google Scholar 

  52. Tu, L. N., Morohaku, K., Manna, P. R., Pelton, S. H., Butler, W. R., Stocco, D. M., et al. (2014). Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. Journal of Biological Chemistry, 289(40), 27444–27454.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Pasqualetti, G., Brooks, D. J., & Edison, P. (2015). The role of neuroinflammation in dementias. Current Neurology and Neuroscience Reports, 15(4), 17.

    PubMed  Article  CAS  Google Scholar 

  54. Camsonne, R., Crouzel, C., Comar, D., Mazière, M., Prenant, C., Sastre, J., et al. (1984). Synthesis of 1-(2-chlorophenyl)-N-[11C] methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide (PK 11195): A new ligand for peripheral benzodiazepine receptors. Journal of Labelled Compound Radiopharmaceuticals, 21, 985–991.

    CAS  Article  Google Scholar 

  55. Damont, A., Boisgard, R., Kuhnast, B., Lemée, F., Raggiri, G., Scarf, A. M., et al. (2011). Synthesis of 6-[18F] fluoro-PBR28, a novel radiotracer for imaging the TSPO 18 kDa with PET. Bioorganic & Medicinal Chemistry Letters, 21(16), 4819–4822.

    CAS  Article  Google Scholar 

  56. Maeda, J., Suhara, T., Zhang, M. R., Okauchi, T., Yasuno, F., Ikoma, Y., et al. (2004). Novel peripheral benzodiazepine receptor ligand [11C] DAA1106 for PET: An imaging tool for glial cells in the brain. Synapse (New York, N. Y.), 52(4), 283–291.

    CAS  Article  Google Scholar 

  57. Wang, M., Gao, M., & Zheng, Q.-H. (2012). Fully automated synthesis of PET TSPO radioligands [11C] DAA1106 and [18F] FEDAA1106. Applied Radiation and Isotopes, 70(6), 965–973.

    CAS  PubMed  Article  Google Scholar 

  58. Wilson, A. A., Garcia, A., Parkes, J., McCormick, P., Stephenson, K. A., Houle, S., et al. (2008). Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nuclear Medicine and Biology, 35(3), 305–314.

    CAS  PubMed  Article  Google Scholar 

  59. Varrone, A., Oikonen, V., Forsberg, A., Joutsa, J., Takano, A., Solin, O., et al. (2015). Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F] FEMPA in Alzheimer’s disease patients and control subjects. European Journal of Nuclear Medicine and Molecular Imaging, 42(3), 438–446.

    PubMed  Article  Google Scholar 

  60. James, M. L., Fulton, R. R., Vercoullie, J., Henderson, D. J., Garreau, L., Chalon, S., et al. (2008). DPA-714, a new translocator protein–specific ligand: Synthesis, radiofluorination, and pharmacologic characterization. Journal of Nuclear Medicine, 49(5), 814–822.

    CAS  PubMed  Article  Google Scholar 

  61. Castellano, S., Taliani, S., Milite, C., Pugliesi, I., Da Pozzo, E., Rizzetto, E., et al. (2012). Synthesis and biological evaluation of 4-phenylquinazoline-2-carboxamides designed as a novel class of potent ligands of the translocator protein. Journal of Medicinal Chemistry, 55(9), 4506–4510.

    CAS  PubMed  Article  Google Scholar 

  62. Wadsworth, H., Jones, P., Chau, W., Durrant, C., Fouladi, N., Passmore, J., et al. (2012). [18F] GE-180: A novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorganic & Medicinal Chemistry Letters, 22(3), 1308–1313.

    CAS  Article  Google Scholar 

  63. Vuckovic, Z., Gentry, P. R., Berizzi, A. E., Hirata, K., Varghese, S., Thompson, G., et al. (2019). Crystal structure of the M5 muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences, 116(51), 26001–26007.

    CAS  Article  Google Scholar 

  64. Bonifazi, A., Yano, H., Del Bello, F., Farande, A., Quaglia, W., Petrelli, R., et al. (2014). Synthesis and biological evaluation of a novel series of heterobivalent muscarinic ligands based on xanomeline and 1-[3-(4-butylpiperidin-1-yl) propyl]-1, 2, 3, 4-tetrahydroquinolin-2-one (77-LH-28-1). Journal of Medicinal Chemistry, 57(21), 9065–9077.

    CAS  PubMed  Article  Google Scholar 

  65. Buiter, H. J., Leysen, J. E., Schuit, R. C., Fisher, A., Lammertsma, A. A., & Windhorst, A. D. (2012). Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [11C] AF150 (S). Journal of Labelled Compounds and Radiopharmaceuticals, 55(7), 264–273.

    CAS  Article  Google Scholar 

  66. Budzik, B., Garzya, V., Shi, D., Walker, G., Woolley-Roberts, M., Pardoe, J., et al. (2010). Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Medicinal Chemistry Letters, 1(6), 244–248.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Nabulsi, N. B., Holden, D., Zheng, M.-Q., Bois, F., Lin, S.-F., Najafzadeh, S., et al. (2019). Evaluation of 11C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates. Journal of Nuclear Medicine, 60(8), 1147–1153.

    CAS  PubMed  Article  Google Scholar 

  68. Tong, L., Li, W., Lo, M.M.-C., Gao, X., Wai, J.M.-C., Rudd, M., et al. (2020). Discovery of [11C] MK-6884: A positron emission tomography (PET) imaging agent for the study of M4Muscarinic receptor positive allosteric modulators (PAMs) in neurodegenerative diseases. Journal of Medicinal Chemistry, 63(5), 2411–2425.

    CAS  PubMed  Article  Google Scholar 

  69. Pichika, R., Easwaramoorthy, B., Collins, D., Christian, B. T., Shi, B., Narayanan, T. K., et al. (2006). Nicotinic α4β2 receptor imaging agents: Part II. Synthesis and biological evaluation of 2-[18F] fluoro-3-[2-((S)-3-pyrrolinyl) methoxy] pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nuclear Medicine and Biology, 33(3), 295–304.

    CAS  PubMed  Article  Google Scholar 

  70. Sabri, O., Becker, G.-A., Meyer, P. M., Hesse, S., Wilke, S., Graef, S., et al. (2015). First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F] Flubatine. NeuroImage, 118, 199–208.

    CAS  PubMed  Article  Google Scholar 

  71. Gao, Y., Kuwabara, H., Spivak, C. E., Xiao, Y., Kellar, K., Ravert, H. T., et al. (2008). Discovery of (−)-7-methyl-2-exo-[3′-(6-[18F] fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo [2.2. 1] heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (α4β2-nAChR) with optimal positron emission tomography imaging properties. Journal of Medicinal Chemistry, 51(15), 4751–4764.

    CAS  PubMed  Article  Google Scholar 

  72. Hashimoto, K., Nishiyama, S., Ohba, H., Matsuo, M., Kobashi, T., Takahagi, M., et al. (2008). [11C] CHIBA-1001 as a novel PET ligand for α7 nicotinic receptors in the brain: A PET study in conscious monkeys. PLoS ONE, 3(9), e3231.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Horti, A. G., Gao, Y., Kuwabara, H., Wang, Y., Abazyan, S., Yasuda, R. P., et al. (2014). 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. Journal of Nuclear Medicine, 55(4), 672–677.

    CAS  PubMed  Article  Google Scholar 

  74. Irie, T., Fukushi, K., Akimoto, Y., Tamagami, H., & Nozaki, T. (1994). Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AchE) in vivo. Nuclear Medicine and Biology, 21(6), 801–808.

    CAS  PubMed  Article  Google Scholar 

  75. Snyder, S. E., Tluczek, L., Jewett, D. M., Nguyen, T. B., Kuhl, D. E., & Kilbourn, M. R. (1998). Synthesis of 1-[11C] methylpiperidin-4-yl propionate ([11C] PMP) for in vivo measurements of acetylcholinesterase activity. Nuclear Medicine and Biology, 25(8), 751–754.

    CAS  PubMed  Article  Google Scholar 

  76. Snyder, S. E., Gunupudi, N., Sherman, P. S., Butch, E. R., Skaddan, M. B., Kilbourn, M. R., et al. (2001). Radiolabeled cholinesterase substrates: In vitro methods for determining structure-activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. Journal of Cerebral Blood Flow & Metabolism, 21(2), 132–143.

    CAS  Article  Google Scholar 

  77. Brittain, R. T., Levy, G. P., & Tyers, M. B. (1969). The neuromuscular blocking action of 2-(4-phenylpiperidino) cyclohexanol (AH 5183). European Journal of Pharmacology, 8(1), 93–99.

    CAS  PubMed  Article  Google Scholar 

  78. Mulholland, G. K., Wieland, D. M., Kilbourn, M. R., Frey, K. A., Sherman, P. S., Carey, J. E., et al. (1998). [18F] fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse (New York, N. Y.), 30(3), 263–274.

    CAS  Article  Google Scholar 

  79. Tu, Z., Zhang, X., Jin, H., Yue, X., Padakanti, P. K., Yu, L., et al. (2015). Synthesis and biological characterization of a promising F-18 PET tracer for vesicular acetylcholine transporter. Bioorganic & Medicinal Chemistry, 23(15), 4699–4709.

    CAS  Article  Google Scholar 

  80. Boschi, F., Camps, P., Comes-Franchini, M., Muñoz-Torrero, D., Ricci, A., & Sánchez, L. (2005). A synthesis of levetiracetam based on (S)-N-phenylpantolactam as a chiral auxiliary. Tetrahedron Asymmetry, 16(22), 3739–3745.

    CAS  Article  Google Scholar 

  81. Warnier, C., Lemaire, C., Becker, G., Zaragoza, G., Giacomelli, F., Jl, A., et al. (2016). Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand ([18F] UCB-H). Journal of Medicinal Chemistry, 59(19), 8955–8966.

    CAS  PubMed  Article  Google Scholar 

  82. Estrada, S., Lubberink, M., Thibblin, A., Sprycha, M., Buchanan, T., Mestdagh, N., et al. (2016). [11C] UCB-A, a novel PET tracer for synaptic vesicle protein 2 A. Nuclear Medicine and Biology, 43(6), 325–332.

    CAS  PubMed  Article  Google Scholar 

  83. Nabulsi, N. B., Mercier, J., Holden, D., Carré, S., Najafzadeh, S., Vandergeten, M.-C., et al. (2016). Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. Journal of Nuclear Medicine, 57(5), 777–784.

    CAS  PubMed  Article  Google Scholar 

  84. Li, S., Cai, Z., Wu, X., Holden, D., Pracitto, R., Kapinos, M., et al. (2018). Synthesis and in vivo evaluation of a novel PET radiotracer for imaging of synaptic vesicle glycoprotein 2A (SV2A) in nonhuman primates. ACS Chemical Neuroscience, 10(3), 1544–1554.

    PubMed  Article  CAS  Google Scholar 

  85. Cai, Z., Li, S., Finnema, S., Lin, S.-f, Zhang, W., Holden, D., et al. (2017). Imaging synaptic density with novel 18F-labeled radioligands for synaptic vesicle protein-2A (SV2A): Synthesis and evaluation in nonhuman primates. Journal of Nuclear Medicine, 58(supplement 1), 547.

    Google Scholar 

  86. Trump, L., Lemos, A., Jrm, J., Pasau, P., Bnd, L., Mercier, J., et al. (2020). Development of a general automated flow photoredox 18F-difluoromethylation of N-heteroaromatics in an AllinOne synthesizer. Organic Process Research & Development, 24(5), 734–744.

    CAS  Article  Google Scholar 

  87. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.

    PubMed  Article  Google Scholar 

  89. Thientunyakit, T., Sethanandha, C., Muangpaisan, W., & Minoshima, S. (2021). 3D-SSP analysis for amyloid brain PET imaging using 18F-florbetapir in patients with Alzheimer’s dementia and mild cognitive impairment. Medical Journal of Malaysia, 76(4), 493–501.

    CAS  PubMed  Google Scholar 

  90. Thientunyakit, T., Thongpraparn, T., Sethanandha, C., Yamada, T., Kimura, Y., Muangpaisan, W., et al. (2021). Relationship between F-18 florbetapir uptake in occipital lobe and neurocognitive performance in Alzheimer’s disease. Japanese Journal of Radiology, 39(10), 984–993.

    CAS  PubMed  Article  Google Scholar 

  91. Thientunyakit, T., Sethanandha, C., Muangpaisan, W., Chawalparit, O., Arunrungvichian, K., Siriprapa, T., et al. (2018). Implementation of [18F]-labeled amyloid brain PET imaging biomarker in the diagnosis of Alzheimer’s disease: First-hand experience in Thailand. Nuclear Medicine Communications, 39(2), 186–192.

    PubMed  Article  Google Scholar 

  92. Thientunyakit, T., Sethanandha, C., Muangpaisan, W., Chawalparit, O., Arunrungvichian, K., Siriprapa, T., et al. (2020). Relationships between amyloid levels, glucose metabolism, morphologic changes in the brain and clinical status of patients with Alzheimer’s disease. Annals of Nuclear Medicine, 34(5), 337–348.

    CAS  PubMed  Article  Google Scholar 

  93. Burnham, S. C., Laws, S. M., Budgeon, C. A., Doré, V., Porter, T., Bourgeat, P., et al. (2020). Impact of APOE-ε4 carriage on the onset and rates of neocortical Aβ-amyloid deposition. Neurobiology of Aging, 95, 46–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., et al. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. The Lancet Neurology, 12(4), 357–367.

    CAS  PubMed  Article  Google Scholar 

  95. Braak, H., Braak, E., Bohl, J., & Reintjes, R. (1996). Age, neurofibrillary changes, Aβ-amyloid and the onset of Alzheimer’s disease. Neuroscience Letters, 210(2), 87–90.

    CAS  PubMed  Article  Google Scholar 

  96. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., et al. (2007). Imaging β-amyloid burden in aging and dementia. Neurology, 68(20), 1718–1725.

    CAS  PubMed  Article  Google Scholar 

  97. Rowe, C. C., & Villemagne, V. L. (2013). Brain amyloid imaging. Journal of Nuclear Medicine Technology, 41(1), 11–18.

    PubMed  Google Scholar 

  98. Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D., Sr., Jagust, W. J., et al. (2015). The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & Dementia, 11(1), 1-15.e4.

    Article  Google Scholar 

  99. Rowe, C. C., Jones, G., Doré, V., Pejoska, S., Margison, L., Mulligan, R. S., et al. (2016). Standardized expression of 18F-NAV4694 and 11C-PiB β-amyloid PET results with the Centiloid Scale. Journal of Nuclear Medicine, 57(8), 1233–1237.

    CAS  PubMed  Article  Google Scholar 

  100. Bischof, G. N., Bartenstein, P., Barthel, H., van Berckel, B. N., Doré, V., van Eimeren, T., et al. (2021). Towards a universal readout for fluorine-18 labelled amyloid tracers: The CAPTAINs Study. Journal of Nuclear Medicine, 62(7), 999–1005.

    CAS  PubMed  Article  Google Scholar 

  101. Amadoru, S., Doré, V., McLean, C. A., Hinton, F., Shepherd, C. E., Halliday, G. M., et al. (2020). Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer’s disease. Alzheimer’s Research & Therapy, 12(1), 1–8.

    Article  CAS  Google Scholar 

  102. Schöll, M., Lockhart, S. N., Schonhaut, D. R., O’Neil, J. P., Janabi, M., Ossenkoppele, R., et al. (2016). PET imaging of tau deposition in the aging human brain. Neuron, 89(5), 971–982.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Groot, C., Doré, V., Robertson, J., Burnham, S. C., Savage, G., Ossenkoppele, R., et al. (2021). Mesial temporal tau is related to worse cognitive performance and greater neocortical tau load in amyloid-β–negative cognitively normal individuals. Neurobiology of Aging, 97, 41–48.

    CAS  PubMed  Article  Google Scholar 

  104. Murray, M. E., Graff-Radford, N. R., Ross, O. A., Petersen, R. C., Duara, R., & Dickson, D. W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. The Lancet Neurology, 10(9), 785–796.

    PubMed  PubMed Central  Article  Google Scholar 

  105. Ossenkoppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., Baker, S. L., et al. (2016). Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain, 139(5), 1551–1567.

    PubMed  PubMed Central  Article  Google Scholar 

  106. Ossenkoppele, R., Lyoo, C. H., Sudre, C. H., van Westen, D., Cho, H., Ryu, Y. H., et al. (2020). Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimer’s & Dementia, 16(2), 335–344.

    Article  Google Scholar 

  107. Hanseeuw, B. J., Betensky, R. A., Jacobs, H. I., Schultz, A. P., Sepulcre, J., Becker, J. A., et al. (2019). Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurology, 76(8), 915–924.

    PubMed  PubMed Central  Article  Google Scholar 

  108. Chiotis, K., Saint-Aubert, L., Rodriguez-Vieitez, E., Leuzy, A., Almkvist, O., Savitcheva, I., et al. (2018). Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Molecular Psychiatry, 23(7), 1666–1673.

    CAS  PubMed  Article  Google Scholar 

  109. Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathologica, 128(6), 755–766.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Josephs, K. A., Murray, M. E., Tosakulwong, N., Whitwell, J. L., Knopman, D. S., Machulda, M. M., et al. (2017). Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: A clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathologica, 133(5), 705–715.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Betthauser, T. J., Cody, K. A., Zammit, M. D., Murali, D., Converse, A. K., Barnhart, T. E., et al. (2019). In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. Journal of Nuclear Medicine, 60(1), 93–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Smith, R., Schöll, M., Leuzy, A., Jögi, J., Ohlsson, T., Strandberg, O., et al. (2020). Head-to-head comparison of tau positron emission tomography tracers [18F] flortaucipir and [18F] RO948. European Journal of Nuclear Medicine and Molecular Imaging, 47(2), 342–354.

    PubMed  Article  CAS  Google Scholar 

  113. Leuzy, A., Chiotis, K., Lemoine, L., Gillberg, P.-G., Almkvist, O., Rodriguez-Vieitez, E., et al. (2019). Tau PET imaging in neurodegenerative tauopathies—still a challenge. Molecular Psychiatry, 24(8), 1112–1134.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Ikonomovic, M. D., Abrahamson, E. E., Price, J. C., Mathis, C. A., & Klunk, W. E. (2016). [F-18] AV-1451 PET retention in choroid plexus: More than “off-target” binding. Annals of Neurology, 80(2), 307–308.

    PubMed  PubMed Central  Article  Google Scholar 

  115. Villemagne, V. L., Lopresti, B. J., Doré, V., Tudorascu, D., Ikonomovic, M. D., Burnham, S., et al. (2021). What is T+? A gordian knot of tracers, thresholds, and topographies. Journal of Nuclear Medicine, 62(5), 614–619.

    PubMed  Article  CAS  Google Scholar 

  116. Minoshima, S., Mosci, K., Cross, D., & Thientunyakit, T. (2021). Brain [F-18] FDG PET for Clinical Dementia Workup: Differential diagnosis of Alzheimer’s Disease and other types of dementing disorders. Seminars in Nuclear Medicine, 51(3), 230–240.

    PubMed  Article  Google Scholar 

  117. Minoshima, S., Frey, K. A., Koeppe, R. A., Foster, N. L., & Kuhl, D. E. (1995). A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. Journal of Nuclear Medicine, 36(7), 1238–1248.

    CAS  PubMed  Google Scholar 

  118. Sakamoto, S., Ishii, K., Sasaki, M., Hosaka, K., Mori, T., Matsui, M., et al. (2002). Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. Journal of The Neurological Sciences, 200(1–2), 27–32.

    CAS  PubMed  Article  Google Scholar 

  119. Mosconi, L., Tsui, W. H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., et al. (2008). Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. Journal of Nuclear Medicine, 49(3), 390–398.

    PubMed  Article  Google Scholar 

  120. Morris, E., Chalkidou, A., Hammers, A., Peacock, J., Summers, J., & Keevil, S. (2016). Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging, 43(2), 374–385.

    CAS  PubMed  Article  Google Scholar 

  121. Brendel, M., Schnabel, J., Schönecker, S., Wagner, L., Brendel, E., Meyer-Wilmes, J., et al. (2017). Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 44(13), 2239–2248.

    PubMed  Article  Google Scholar 

  122. Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Yokokura, M., Mori, N., Yagi, S., Yoshikawa, E., Kikuchi, M., Yoshihara, Y., et al. (2011). In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 38(2), 343–351.

    CAS  PubMed  Article  Google Scholar 

  124. Geloso, M. C., Corvino, V., Marchese, E., Serrano, A., Michetti, F., & D’Ambrosi, N. (2017). The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Frontiers in Aging Neuroscience, 9, 242.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. Stefaniak, J., & O’Brien, J. (2016). Imaging of neuroinflammation in dementia: A review. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 21–28.

    Google Scholar 

  126. Song, Y. S. (2019). Perspectives in TSPO PET imaging for neurologic diseases. Nuclear Medicine and Molecular Imaging, 53(6), 382–385.

    PubMed  PubMed Central  Article  Google Scholar 

  127. Wilcock, G. K., Esiri, M. M., Bowen, D. M., & Smith, C. C. (1982). Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. Journal of the Neurological Sciences, 57(2–3), 407–417.

    CAS  PubMed  Article  Google Scholar 

  128. Bell, K. F., Ducatenzeiler, A., Ribeiro-da-Silva, A., Duff, K., Bennett, D. A., & Cuello, A. C. (2006). The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiology of Aging, 27(11), 1644–1657.

    CAS  PubMed  Article  Google Scholar 

  129. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s disease: Targeting the cholinergic system. Current Neuropharmacology, 14(1), 101–115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Kuhl, D. E., Minoshima, S., Frey, K. A., Foster, N. L., Kilbourn, M. R., & Koeppe, R. A. (2000). Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Annals of Neurology, 48(3), 391–395.

    CAS  PubMed  Article  Google Scholar 

  131. Aghourian, M., Legault-Denis, C., Soucy, J., Rosa-Neto, P., Gauthier, S., Kostikov, A., et al. (2017). Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Molecular Psychiatry, 22(11), 1531–1538.

    CAS  PubMed  Article  Google Scholar 

  132. Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M.-A., Spreng, R. N., Alzheimer’s Disease Neuroimaging Initiative. (2018). Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Reports, 24(1), 38–46.

    CAS  PubMed  Article  Google Scholar 

  133. Okada, H., Ouchi, Y., Ogawa, M., Futatsubashi, M., Saito, Y., Yoshikawa, E., et al. (2013). Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain, 136(10), 3004–3017.

    PubMed  Article  Google Scholar 

  134. Robinson, J. L., Molina-Porcel, L., Corrada, M. M., Raible, K., Lee, E. B., Lee, V.M.-Y., et al. (2014). Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the oldest-old. Brain, 137(9), 2578–2587.

    PubMed  PubMed Central  Article  Google Scholar 

  135. Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76, 1–8.

    CAS  PubMed  Article  Google Scholar 

  136. O’Dell, R. S., Mecca, A. P., Chen, M.-K., Naganawa, M., Toyonaga, T., Lu, Y., et al. (2021). Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: A PET imaging study with [11C] UCB-J. Alzheimer’s Research & Therapy, 13(1), 1–12.

    Article  CAS  Google Scholar 

  137. Chen, M.-K., Mecca, A. P., Naganawa, M., Finnema, S. J., Toyonaga, T., Lin, S.-f, et al. (2018). Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurology, 75(10), 1215–1224.

    PubMed  PubMed Central  Article  Google Scholar 

  138. De Wilde, M. C., Overk, C. R., Sijben, J. W., & Masliah, E. (2016). Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimer’s & Dementia, 12(6), 633–644.

    Article  Google Scholar 

  139. Mecca, A. P., Chen, M. K., O’Dell, R. S., Naganawa, M., Toyonaga, T., Godek, T. A., et al. (2020). In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimer’s & Dementia, 16(7), 974–982.

    Article  Google Scholar 

  140. Vanhaute, H., Ceccarini, J., Michiels, L., Koole, M., Sunaert, S., Lemmens, R., et al. (2020). In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology, 95(5), e545–e553.

    CAS  PubMed  Article  Google Scholar 

  141. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. The Lancet, 367(9518), 1262–1270.

    Article  Google Scholar 

  142. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    CAS  PubMed  Article  Google Scholar 

  143. Small, G. W., Kepe, V., Ercoli, L. M., Siddarth, P., Bookheimer, S. Y., Miller, K. J., et al. (2006). PET of brain amyloid and tau in mild cognitive impairment. New England Journal of Medicine, 355(25), 2652–2663.

    CAS  PubMed  Article  Google Scholar 

  144. Doecke, J. D., Ward, L., Burnham, S. C., Villemagne, V. L., Li, Q.-X., Collins, S., et al. (2020). Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging. Alzheimer’s Research & Therapy, 12(1), 1–10.

    Article  CAS  Google Scholar 

  145. Okello, A., Koivunen, J., Edison, P., Archer, H., Turkheimer, F., Någren, Ku., et al. (2009). Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology, 73(10), 754–760.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A., et al. (2008). PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiology of Aging, 29(10), 1456–1465.

    CAS  PubMed  Article  Google Scholar 

  147. Doraiswamy, P. M., Sperling, R., Johnson, K., Reiman, E. M., Wong, T., Sabbagh, M., et al. (2014). Florbetapir F 18 amyloid PET and 36-month cognitive decline: A prospective multicenter study. Molecular Psychiatry, 19(9), 1044–1051.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Pontecorvo, M. J., Devous, M. D., Sr., Navitsky, M., Lu, M., Salloway, S., Schaerf, F. W., et al. (2017). Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain, 140(3), 748–763.

    PubMed  PubMed Central  Google Scholar 

  149. Price, J. L., Ko, A. I., Wade, M. J., Tsou, S. K., McKeel, D. W., & Morris, J. C. (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Archives of Neurology, 58(9), 1395–1402.

    CAS  PubMed  Article  Google Scholar 

  150. Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., et al. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218.

    PubMed  Article  Google Scholar 

  151. Chetelat, G., Desgranges, B., De La Sayette, V., Viader, F., Eustache, F., & Baron, J.-C. (2003). Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology, 60(8), 1374–1377.

    CAS  PubMed  Article  Google Scholar 

  152. Mallik, A., Drzezga, A., & Minoshima, S. (2017). Clinical amyloid imaging. Seminars in Nuclear Medicine, 47(1), 31–43.

    PubMed  Article  Google Scholar 

  153. Sabri, O., Meyer, P. M., Gräf, S., Hesse, S., Wilke, S., Becker, G.-A., et al. (2018). Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain, 141(6), 1840–1854.

    PubMed  PubMed Central  Article  Google Scholar 

  154. Panza, F., Solfrizzi, V., Frisardi, V., Imbimbo, B. P., Capurso, C., D’Introno, A., et al. (2009). Beyond the neurotransmitter-focused approach in treating Alzheimer’s disease: Drugs targeting β-amyloid and tau protein. Aging Clinical and Experimental Research, 21(6), 386–406.

    CAS  PubMed  Article  Google Scholar 

  155. Zhang, F., Zhong, R.-j, Cheng, C., Li, S., & Le, W.-d. (2021). New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 42(9), 1382–1389.

    CAS  PubMed  Article  Google Scholar 

  156. Schmidt, M. E., Chiao, P., Klein, G., Matthews, D., Thurfjell, L., Cole, P. E., et al. (2015). The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimer’s & Dementia, 11(9), 1050–1068.

    Article  Google Scholar 

  157. Tzimopoulou, S., Cunningham, V. J., Nichols, T. E., Searle, G., Bird, N. P., Mistry, P., et al. (2010). A multi-center randomized proof-of-concept clinical trial applying [18F] FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(4), 1241–1256.

    CAS  PubMed  Article  Google Scholar 

  158. Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69(1), 29–38.

    PubMed  Article  Google Scholar 

  159. Smith, G. S., Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Diaconescu, A. O., Workman, C. I., et al. (2012). Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Archives of Neurology, 69(9), 1141–1148.

    PubMed  Article  Google Scholar 

  160. Teipel, S. J., Drzezga, A., Bartenstein, P., Möller, H.-J., Schwaiger, M., & Hampel, H. (2006). Effects of donepezil on cortical metabolic response to activation during 18FDG-PET in Alzheimer’s disease: A double-blind cross-over trial. Psychopharmacology (Berl), 187(1), 86–94.

    CAS  Article  Google Scholar 

  161. Mega, M. S., Dinov, I. D., Porter, V., Chow, G., Reback, E., Davoodi, P., et al. (2005). Metabolic patterns associated with the clinical response to galantamine therapy: A fludeoxyglucose f 18 positron emission tomographic study. Archives of Neurology, 62(5), 721–728.

    PubMed  Article  Google Scholar 

  162. James, M. L., Belichenko, N. P., Shuhendler, A. J., Hoehne, A., Andrews, L. E., Condon, C., et al. (2017). [(18)F]GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer’s disease. Theranostics, 7(6), 1422–1436.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Bao, W., Xie, F., Zuo, C., Guan, Y., & Huang, Y. H. (2021). PET neuroimaging of Alzheimer’s disease: Radiotracers and their utility in clinical research. Frontiers in Aging Neuroscience, 13, 114.

    Article  CAS  Google Scholar 

  164. Bateman, R. J., Aisen, P. S., De Strooper, B., Fox, N. C., Lemere, C. A., Ringman, J. M., et al. (2011). Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Research & Therapy, 3(1), 1–13.

    Article  Google Scholar 

  165. Harrison, T. M., La Joie, R., Maass, A., Baker, S. L., Swinnerton, K., Fenton, L., et al. (2019). Longitudinal tau accumulation and atrophy in aging and Alzheimer disease. Annals of Neurology, 85(2), 229–240.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Duyckaerts, C., Braak, H., Brion, J.-P., Buée, L., Del Tredici, K., Goedert, M., et al. (2015). PART is part of Alzheimer disease. Acta Neuropathologica, 129(5), 749–756.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Jack, C. R., Knopman, D. S., Chételat, G., Dickson, D., Fagan, A. M., Frisoni, G. B., et al. (2016). Suspected non-Alzheimer disease pathophysiology—concept and controversy. Nature Reviews Neurology, 12(2), 117–124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. Mosconi, L., De Santi, S., Brys, M., Tsui, W. H., Pirraglia, E., Glodzik-Sobanska, L., et al. (2008). Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biological Psychiatry, 63(6), 609–618.

    CAS  PubMed  Article  Google Scholar 

  169. Mosconi, L., Sorbi, S., de Leon, M. J., Li, Y., Nacmias, B., Myoung, P. S., et al. (2006). Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. Journal of Nuclear Medicine, 47(11), 1778–1786.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The patients’ images in this work are from the research projects partially funded by National Research Council of Thailand through Health System Research Institute (Grant Nos. 58–036, 60–065, and 62–044), Research Development Fund, Faculty of Medicine Siriraj Hospital (Grant Nos. R016236003 and R016134004) and the International Atomic Energy Agency under CRP E13043 (Grant No. 19256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanyaluck Thientunyakit.

Ethics declarations

Conflict of interest

No conflicts of interest related to any aspect of this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thientunyakit, T., Shiratori, S., Ishii, K. et al. Molecular PET Imaging in Alzheimer’s Disease. J. Med. Biol. Eng. (2022). https://doi.org/10.1007/s40846-022-00717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-022-00717-4

Keywords

  • Molecular imaging
  • PET
  • Positron emission tomography
  • Alzheimer’s disease
  • AD