Skip to main content

Impact of CT-Based and MRI-Based Attenuation Correction Methods on 18 F-FDG PET Quantification Using PET Phantoms



Integrated PET/MRI imaging system has been widely used in clinical and research applications since it can simultaneously provide functional and structural information. Accurate attenuation correction (AC) is an important challenge that PET/MRI must overcome to obtain correct quantification results and clinical diagnosis. This study aimed to determine the relationship between the radioactivity concentrations produced by computed tomography AC (CTAC) and that produced by magmetic resonance AC (MRAC) and investigate the possibility of comparing the acquired results from different integrated imaging systems.


This study used the American College of Radiology (ACR), the International Electrotechnical Commission (IEC), and striatal phantom to simulate the attenuation of organs (lung, abdomen, and head). All phantoms were injected with 18 F-FDG and underwent a PET/CT scan under GE Discovery STE and a PET/MRI scan under GE SIGNA. The built-in AC method was adopted for both scanners. Regions-of-interest (ROIs) were manually drawn, and mean activity concentrations in each ROI were calculated. Relative percent difference and linear correlation were used to compare the obtained results from CTAC and MRAC.


Strong correlation were found in ACR phantom (CMRAC = 0.77 × CCTAC – 76.26 with R2 = 0.96), IEC phantom (CMRAC = 1.73 × CCTAC – 588.03 with R2 = 0.98), and striatal phantom (CMRAC = 0.75 × CCTAC – 830.61 with R2 = 0.99).


Quantification results of MRAC were strongly correlated with those of CTAC. Results acquired from different integrated imaging systems can be compared using a linear equation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(adapted from ACR PET phantom instructions [29])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Nensa, F., Beiderwellen, K., Heusch, P., & Wetter, A. (2014). Clinical applications of PET/MRI: Current status and future perspectives. Diagnostic and Interventional Radiology, 20(5), 438–447.

    Article  Google Scholar 

  2. Grimm, R., Fürst, S., Souvatzoglou, M., Forman, C., Hutter, J., Dregely, I., et al. (2015). Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Medical Image Analysis, 19(1), 110–120.

    Article  Google Scholar 

  3. Acosta, O., Bourgeat, P., Zuluaga, M. A., Fripp, J., Salvado, O., Ourselin, S., Alzheimer’s Disease Neuroimaging Initiative. (2009). Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–Eulerian PDE approach using partial volume maps. Medical Image Analysis, 13(5), 730–743.

    Article  Google Scholar 

  4. Kinahan, P. E., Townsend, D. W., Beyer, T., & Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Medical Physics, 25(10), 2046–2053.

    CAS  Article  Google Scholar 

  5. Schulz, V., Torres-Espallardo, I., Renisch, S., Hu, Z., Ojha, N., Börnert, P., et al. (2011). Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. European Journal of Nuclear Medicine and Molecular Imaging, 38(1), 138–152.

    CAS  Article  Google Scholar 

  6. Zaidi, H., Montandon, M. L., & Slosman, D. O. (2003). Magnetic resonance imaging-guided attenuation and scatter corrections in three‐dimensional brain positron emission tomography. Medical Physics, 30(5), 937–948.

    Article  Google Scholar 

  7. Schlemmer, H. P. W., Pichler, B. J., Schmand, M., Burbar, Z., Michel, C., Ladebeck, R., et al. (2008). Simultaneous MR/PET imaging of the human brain: Feasibility study. Radiology, 248(3), 1028–1035.

    Article  Google Scholar 

  8. Aasheim, L. B., Karlberg, A., Goa, P. E., Håberg, A., Sørhaug, S., Fagerli, U. M., & Eikenes, L. (2015). PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. European Journal of Nuclear Medicine and Molecular Imaging, 42(9), 1439–1446.

    Article  Google Scholar 

  9. Juttukonda, M. R., Mersereau, B. G., Chen, Y., Su, Y., Rubin, B. G., Benzinger, T. L., et al. (2015). MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. Neuroimage, 112, 160–168

    Article  Google Scholar 

  10. Cabello, J., Lukas, M., Förster, S., Pyka, T., Nekolla, S. G., & Ziegler, S. I. (2015). MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. Journal of Nuclear Medicine, 56(3), 423–429

    Article  Google Scholar 

  11. Catana, C., van der Kouwe, A., Benner, T., Michel, C. J., Hamm, M., Fenchel, M., et al. (2010). Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. Journal of Nuclear Medicine, 51(9), 1431–1438.

    CAS  Article  Google Scholar 

  12. Keereman, V., Fierens, Y., Broux, T., De Deene, Y., Lonneux, M., & Vandenberghe, S. (2010). MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. Journal of Nuclear Medicine, 51(5), 812–818.

    Article  Google Scholar 

  13. Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., et al. (2008). MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration. Journal of Nuclear Medicine, 49(11), 1875–1883.

    Article  Google Scholar 

  14. Beyer, T., Weigert, M., Quick, H. H., Pietrzyk, U., Vogt, F., Palm, C., et al. (2008). MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. European Journal of Nuclear Medicine and Molecular Imaging, 35(6), 1142–1146.

    Article  Google Scholar 

  15. Sekine, T., Buck, A., Delso, G., Ter Voert, E. E., Huellner, M., Veit-Haibach, P., & Warnock, G. (2016). Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. Journal of Nuclear Medicine, 57(2), 215–220

    CAS  Article  Google Scholar 

  16. Kops, E. R., Hautzel, H., Herzog, H., Antoch, G., & Shah, N. J. (2015). Comparison of template-based versus CT-based attenuation correction for hybrid MR/PET scanners. IEEE Transactions on Nuclear Science, 62(5), 2115–2121

    CAS  Article  Google Scholar 

  17. Koesters, T., Friedman, K. P., Fenchel, M., Zhan, Y., Hermosillo, G., Babb, J., et al. (2016). Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. Journal of Nuclear Medicine, 57(6), 918–924

    CAS  Article  Google Scholar 

  18. Salomon, A., Goedicke, A., Schweizer, B., Aach, T., & Schulz, V. (2010). Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Transactions on Medical Imaging, 30(3), 804–813.

    Article  Google Scholar 

  19. Nuyts, J., Bal, G., Kehren, F., Fenchel, M., Michel, C., & Watson, C. (2012). Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Transactions on Medical Imaging, 32(2), 237–246.

    Article  Google Scholar 

  20. Defrise, M., Rezaei, A., & Nuyts, J. (2012). Time-of-flight PET data determine the attenuation sinogram up to a constant. Physics in Medicine & Biology, 57(4), 885.

    Article  Google Scholar 

  21. Boellaard, R., Hofman, M. B. M., Hoekstra, O. S., & Lammertsma, A. A. (2014). Accurate PET/MR quantification using time of flight MLAA image reconstruction. Molecular Imaging and Biology, 16(4), 469–477.

    CAS  Article  Google Scholar 

  22. Rezaei, A., Defrise, M., & Nuyts, J. (2014). ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Transactions on Medical Imaging, 33(7), 1563–1572.

    Article  Google Scholar 

  23. Weiger, M., Hennel, F., & Pruessmann, K. P. (2010). Sweep MRI with algebraic reconstruction. Magnetic Resonance in Medicine, 64(6), 1685–1695.

    Article  Google Scholar 

  24. Hofmann, M., Bezrukov, I., Mantlik, F., Aschoff, P., Steinke, F., Beyer, T., et al. (2011). MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. Journal of Nuclear Medicine, 52(9), 1392–1399.

    Article  Google Scholar 

  25. Leynes, A. P., Yang, J., Wiesinger, F., Kaushik, S. S., Shanbhag, D. D., Seo, Y., et al. (2018). Direct pseudoCT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi-parametric MRI: zero echo-time and Dixon deep pseudoCT (ZeDD-CT). Journal of Nuclear Medicine, 59(5), 852–858.

    Article  Google Scholar 

  26. MacFarlane, C. R. (2006). ACR accreditation of nuclear medicine and PET imaging departments. Journal of Nuclear Medicine Technology, 34(1), 18–24.

    PubMed  Google Scholar 

  27. Ziegler, S., Jakoby, B. W., Braun, H., Paulus, D. H., & Quick, H. H. (2015). NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Physics, 2(1), 1–14.

    Article  Google Scholar 

  28. Wu, C. H., Yang, B. H., Chou, Y. H., Wang, S. J., & Chen, J. C. (2018). Effects of 99mTc-TRODAT-1 drug template on image quantitative analysis. PLoS ONE, 13(3).

    Article  Google Scholar 

  29. American College of Radiology. (2010). PET phantom instructions for evaluation of PET image quality

  30. National Electrical Manufacturers Association. (2007). Performance measurements of positron emission tomographs. NEMA Standards Publication NU, 2-2007, 1–33

    Google Scholar 

  31. Wollenweber, S. D., Ambwani, S., Delso, G., Lonn, A. H. R., Mullick, R., Wiesinger, F., et al. (2013). Evaluation of an atlas-based PET head attenuation correction using PET/CT & MR patient data. IEEE Transactions on Nuclear Science, 60(5), 3383–3390.

    Article  Google Scholar 

  32. Wambersie, A. (1989). ICRU Report 44: Tissue Substitutes in Radiation Dosimetry and Measurement. Bethesda (US): International Commission on Radiation Units and Measurements

  33. Leynes, A. P., Yang, J., Shanbhag, D. D., Kaushik, S. S., Seo, Y., Hope, T. A., et al. (2017). Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Medical Physics, 44(3), 902–913.

    CAS  Article  Google Scholar 

Download references


The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations



Writing - review and editing: C-HW, B-HY; Supervision: C-YT, Y-HL; Conceptualization: C-HW, L-CS, B-HY; Methodology: C-HW, L-CS; Formal analysis and investigation: C-HW; Writing - original draft preparation: C-HW.

Corresponding author

Correspondence to Bang-Hung Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, CH., Tu, CY., Shen, LC. et al. Impact of CT-Based and MRI-Based Attenuation Correction Methods on 18 F-FDG PET Quantification Using PET Phantoms. J. Med. Biol. Eng. 42, 374–381 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • PET/CT
  • FDG
  • Attenuation correction
  • CTAC
  • MRAC