Skip to main content

Advertisement

Log in

Materials Properties and Application Strategy for Ligament Tissue Engineering

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Accompanied by clinical and health requirements, ligament tissue engineering has been constantly promoted. Autografts and allografts, due to their limitations and economic benefits, are gradually replaced by artificial ligaments. This review focuses on the materials and application strategy for ligament tissue engineering.

Methods

The choice of biomaterials is one of the important considerations on ligament research. Several natural and synthetic polymers, together with composites and hybrids materials have been studied on ligament scaffolds.

Results

Imitating the structure of the native ligament has always been the focus of ligament research, which involves such as surface physical and chemical properties, structural mechanics. Mechanical properties have always been an insurmountable difficulty in application. The method of high cell adhesion and affinity on the artificial ligaments are also the goals to be pursued.

Conclusion

We describe the strategy for selecting polymers in the design of the scaffolds, as well as discuss the biological and mechanical behavior of these polymers. Several typical research is mentioned for comparison. It is the aims to provide the basic design concept of ligament tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khan, W. S., Longo, U. G., Adesida, A., & Denaro, V. (2012). Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells International, 2012, 403170.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dong, Q., Cai, J., Wang, H., Chen, S., Liu, Y., Yao, J., Shao, Z., & Chen, S. (2020). Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomaterialia, 106, 102–113.

    Article  CAS  PubMed  Google Scholar 

  3. Freeman, J. W., Woods, D., Cromer, D., Ekwueme, C., Andric, T., Atiemo, E., Bijoux, C., & Laurencin, C. (2011). Evaluation of a hydrogel-fiber composite for ACL tissue engineering. Journal of Biomechanics, 44, 694–699.

    Article  PubMed  Google Scholar 

  4. Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine (Auckland, New Zealand), 33, 381–394.

    Article  Google Scholar 

  5. Bosch, U., & Kasperczyk, W. J. (1992). Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction–a process of ligamentization? An experimental study in a sheep model. American Journal of Sports Medicine, 20, 558–566.

    Article  CAS  PubMed  Google Scholar 

  6. Grontvedt, T., Engebretsen, L., Benum, P., Fasting, O., Molster, O., & Strand, T. (1996). A prospective, randomized study of three operations for acute rupture of the anterior cruciate ligament. Five-year follow-up of one hundred and thirty-one patients. Journal of Bone and Joint Surgery. American Volume, 78, 159–168.

    Article  CAS  PubMed  Google Scholar 

  7. Poulsen, M. R., & Johnson, D. L. (2010). Graft selection in anterior cruciate ligament surgery. Orthopedics, 33, 832.

    Article  PubMed  Google Scholar 

  8. Rhatomy, S., Hartoko, L., Setyawan, R., Soekarno, N., Zainal, A., Pridianto, D., & Mustamsir, E. (2020). Single bundle ACL reconstruction with peroneus longus tendon graft: 2-years follow-up. Journal of Clinical Orthopaedics and Trauma, 11, S332–S336.

    Article  PubMed  Google Scholar 

  9. Janssen, R., van der Wijk, J., Fiedler, A., Schmidt, T., Sala, H., & Scheffler, S. (2011). Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1299–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schindler, O. S. (2012). Surgery for anterior cruciate ligament deficiency: A historical perspective. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 5–47.

    Article  PubMed  Google Scholar 

  11. Legnani, C., Ventura, A., Terzaghi, C., Borgo, E., & Albisetti, W. (2010). Anterior cruciate ligament reconstruction with synthetic grafts-–a review of literature. International Orthopaedics, 34, 465–471.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jackson, D. W., Grood, E. S., Goldstein, J. D., Rosen, M. A., Kurzweil, P. R., Cummings, J. F., & Simon, T. M. (1993). A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. American Journal of Sports Medicine, 21, 176–185.

    Article  CAS  PubMed  Google Scholar 

  13. Seo, Y. K., Yoon, H. H., Song, K. Y., Kwon, S. Y., Lee, H. S., Park, Y. S., & Park, J. K. (2009). Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. Journal of Orthopaedic Research, 27, 495–503.

    Article  PubMed  Google Scholar 

  14. Goonoo, N., & Bhaw-Luximon, A. (2019). Mimicking growth factors: Role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Advances, 9, 18124–18146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Machotka, Z., Scarborough, I., Duncan, W., Kumar, S., & Perraton, L. (2010). Anterior cruciate ligament repair with LARS (ligament advanced reinforcement system): A systematic review. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology: (SMARTT), 2, 29.

    Google Scholar 

  16. Smith, B. D., & Grande, D. A. (2015). The current state of scaffolds for musculoskeletal regenerative applications. Nature Reviews Rheumatology, 11, 213–222.

    Article  CAS  PubMed  Google Scholar 

  17. Vunjak-Novakovic, G., Altman, G., Horan, R., & Kaplan, D. L. (2004). Tissue engineering of ligaments. Annual Review of Biomedical Engineering, 6, 131–156.

    Article  CAS  PubMed  Google Scholar 

  18. Kuo, C. E., Marturano, J. E., & Tuan, R. S. (2010). Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology: SMARTT, 2, 20.

    PubMed Central  Google Scholar 

  19. Silva, M., Ferreira, N., Alves, N., & Paiva, M. C. (2020). Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Journal of Nanobiotechnology, 18, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boyan, B. (1996). Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17, 137–146.

    Article  CAS  PubMed  Google Scholar 

  21. Friedl, P., Zänker, K. S., & Bröcker, E. B. (1998). Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microscopy Research and Technique, 43, 369–378.

    Article  CAS  PubMed  Google Scholar 

  22. Campbell, J. J., Husmann, A., Hume, R. D., Watson, C. J., & Cameron, R. E. (2017). Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials, 114, 34–43.

    Article  CAS  PubMed  Google Scholar 

  23. Caliari, S. R., & Harley, B. A. (2011). The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials, 32, 5330–5340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pauly, H. M., Kelly, D. J., Popat, K. C., Trujillo, N. A., Dunne, N. J., McCarthy, H. O., & Haut Donahue, T. L. (2016). Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry. Journal of the Mechanical Behavior of Biomedical Materials, 61, 258–270.

    Article  CAS  PubMed  Google Scholar 

  25. Beertsen, W., McCulloch, C. A., & Sodek, J. (1997). The periodontal ligament: A unique, multifunctional connective tissue. Periodontology, 2000(13), 20–40.

    Article  Google Scholar 

  26. Ashworth, J. C., Mehr, M., Buxton, P. G., Best, S. M., & Cameron, R. E. (2018). Optimising collagen scaffold architecture for enhanced periodontal ligament fibroblast migration. Journal of Materials Science: Materials in Medicine, 29, 166.

    PubMed  Google Scholar 

  27. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60, 613–621.

    Article  CAS  PubMed  Google Scholar 

  28. Shen, W., Chen, X., Hu, Y., Yin, Z., Zhu, T., Hu, J., Chen, J., Zheng, Z., Zhang, W., Ran, J., Heng, B., Ji, J., Chen, W., & Ouyang, H. (2014). Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials, 35, 8154–8163.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X., Laurent, C., Du, Q., Targa, L., Cauchois, G., Chen, Y., Wang, X., & de Isla, N. (2018). Mesenchymal stem cell interacted with PLCL braided scaffold coated with poly-l-lysine/hyaluronic acid for ligament tissue engineering. Journal of Biomedical Materials Research. Part A, 106, 3042–3052.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, Y., Xia, H., Zhang, B., Zhao, Y., & Wang, Y. (2018). Assessment of polyglycolic acid scaffolds for periodontal ligament regeneration. Biotechnology & Biotechnological Equipment, 32, 701–706.

    Article  CAS  Google Scholar 

  31. Zhang, Z. Z., Wang, S. J., Zhang, J. J., Huang, A., Qi, Y., Ding, J., Chen, X., Jiang, D., & Yu, J. (2017). 3D-printed poly(epsilon-caprolactone) scaffold augmented with mesenchymal stem cells for total meniscal substitution: a 12- and 24-week animal study in a rabbit model. American Journal of Sports Medicine, 45, 1497–1511.

    Article  PubMed  Google Scholar 

  32. Lu, H. H., Cooper, J. A., Manuel, S., Freeman, J. W., Attawia, M. A., Ko, F. K., & Laurencin, C. T. (2005). Anterior cruciate ligament regeneration using braided biodegradable scaffolds: In vitro optimization studies. Biomaterials, 26, 4805–4816.

    Article  CAS  PubMed  Google Scholar 

  33. Mulford, J. S., & Chen, D. (2011). Anterior cruciate ligament reconstruction: A systematic review of polyethylene terephthalate grafts. ANZ Journal of Surgery, 81, 785–789.

    Article  PubMed  Google Scholar 

  34. Sahoo, S., Toh, S. L., & Goh, J. C. (2010). A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials, 31, 2990–2998.

    Article  CAS  PubMed  Google Scholar 

  35. Ge, Z., Goh, J. C. H., Wang, L., Tan, E. P. S., & Lee, E. H. (2005). Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering. Journal of Biomaterials Science, Polymer Edition, 16, 1179–1192.

    Article  CAS  Google Scholar 

  36. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.

    Article  CAS  PubMed  Google Scholar 

  37. Nau, T., & Teuschl, A. (2015). Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World Journal of Orthopedics, 6, 127–136.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goulet, F., Rancourt, D, Cloutier, R., Germain, L., Poole, A., & Auger F.(2000). Tendon and ligaments. In R. P. Lanza, R. Langer, & J. P. Vacanti (Eds.), Principles of tissue engineering (pp. 711–722). Elsevier.

  39. Lynn, A. K., Yannas, I. V., & Bonfield, W. (2004). Antigenicity and immunogenicity of collagen. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71, 343–354.

    Article  CAS  PubMed  Google Scholar 

  40. Azevedo, H. S., & Reis, R. L. (2005). Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In Biodegradable systems in tissue engineering and regenerative medicine (pp. 177–201). CRC Press.

  41. Gomes, M. E., & Reis, R. L. (2013). Biodegradable polymers and composites in biomedical applications: From catgut to tissue engineering. Part 1 Available systems and their properties. International Materials Reviews, 49, 261–273.

    Article  CAS  Google Scholar 

  42. Mutsuzaki, H., Sakane, M., Nakajima, H., Ito, A., Hattori, S., Miyanaga, Y., Ochiai, N., & Tanaka, J. (2004). Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. Journal of Biomedical Materials Research. Part A, 70, 319–327.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, C. F., Aschbacher-Smith, L., Barthelery, N. J., Dyment, N., Butler, D., & Wylie, C. (2011). What we should know before using tissue engineering techniques to repair injured tendons: A developmental biology perspective. Tissue Engineering. Part B, Reviews, 17, 165–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, H. H., & Thomopoulos, S. (2013). Functional attachment of soft tissues to bone: Development, healing, and tissue engineering. Annual Review of Biomedical Engineering, 15, 201–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, I., Mitroo, S., Chen, F., Lu, H., & Doty, S. (2006). Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. Journal of Orthopaedic Research, 24, 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, P. J., & Temenoff, J. S. (2009). Engineering orthopedic tissue interfaces. Tissue Engineering. Part B, Reviews, 15, 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng, Y., Tsai, T., Li, J., Liu, X., Wang, S., Hu, H., Zhang, C., & Li, C. (2017). In vivo elongation patterns of the anteromedial and posterolateral bundles of the ACL at low flexion. Journal of Medical and Biological Engineering, 37, 321–327.

    Article  Google Scholar 

  48. Sung, K., Whittemore, D., Yang, L., Amiel, D., & Akeson, W. (1996). Signal pathways and ligament cell adhesiveness. Journal of Orthopaedic Research, 14, 729–735.

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., & Suda, T. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America, 95, 3597–3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research. Part A, 66, 247–259.

    Article  PubMed  CAS  Google Scholar 

  51. Lu, H. H., Subramony, S. D., Boushell, M. K., & Zhang, X. (2010). Tissue engineering strategies for the regeneration of orthopedic interfaces. Annals of Biomedical Engineering, 38, 2142–2154.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shi, H., Zong, W., Xu, X., & Chen, J. (2018). Improved biphasic calcium phosphate combined with periodontal ligament stem cells may serve as a promising method for periodontal regeneration. American Journal of Translational Research, 10, 4030–4041.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai, J., Zhang, Q., Chen, J., Jiang, J., Mo, X., He, C., & Zhao, J. (2021). Electrodeposition of calcium phosphate onto polyethylene terephthalate artificial ligament enhances graft-bone integration after anterior cruciate ligament reconstruction. Bioactive Materials, 6, 783–793.

    Article  CAS  PubMed  Google Scholar 

  54. Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science, 36, 1254–1276.

    Article  CAS  Google Scholar 

  55. Fu, F., Bennett, H., Lattermann, C., & Ma, C. (1999). Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. American Journal of Sports Medicine, 27, 821–830.

    Article  CAS  PubMed  Google Scholar 

  56. Yilgor, C., Huri, P., & Huri, G. (2012). Tissue engineering strategies in ligament regeneration. Stem Cells International, 2012, 374676.

    Article  PubMed  CAS  Google Scholar 

  57. Tangsadthakun, C., Kanokpanont, S., Sanchavanakit, N., Banaprasert, T., & Damrongsakkul, S. (2006). Properties of collagen/chitosan scaffolds for skin tissue engineering. Journal of Metals, Materials and Minerals, 16, 37–44.

    CAS  Google Scholar 

  58. Fleming, B., Magarian, E., Harrison, S., Paller, D., & Murray, M. (2010). Collagen scaffold supplementation does not improve the functional properties of the repaired anterior cruciate ligament. Journal of Orthopaedic Research, 28, 703–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petrigliano, F. A., McAllister, D. R., & Wu, B. M. (2006). Tissue engineering for anterior cruciate ligament reconstruction: A review of current strategies. Arthroscopy, 22, 441–451.

    Article  PubMed  Google Scholar 

  60. Vieira, A., Guedes, R., & Marques, A. (2009). Development of ligament tissue biodegradable devices: A review. Journal of biomechanics, 42, 2421–2430.

    Article  CAS  PubMed  Google Scholar 

  61. Asparuhova, M., Stahli, A., Guldener, K., & Sculean, A. (2021). A novel volume-stable collagen matrix induces changes in the behavior of primary human oral fibroblasts, periodontal ligament, and endothelial cells. International Journal of Molecular Sciences, 22(8), 4051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frahs, S., Oxford, J., Neumann, E., Brown, R., Keller-Peck, C., Pu, X., & Lujan, T. (2018). Extracellular matrix expression and production in fibroblast-collagen gels: Towards an in vitro model for ligament wound healing. Annals of Biomedical Engineering, 46, 1882–1895.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lin, Z., Nica, C., Sculean, A., & Asparuhova, M. (2020). Enhanced wound healing potential of primary human oral fibroblasts and periodontal ligament cells cultured on four different porcine-derived collagen matrices. Materials, 13(17), 3819.

    Article  CAS  PubMed Central  Google Scholar 

  64. Nakamura, S., Ito, T., Okamoto, K., Mima, T., Uchida, K., Siddiqui, Y., Ito, M., Tai, M., Okubo, K., Yamashiro, K., Omori, K., Yamamoto, T., Matsushita, O., & Takashiba, S. (2019). Acceleration of bone regeneration of horizontal bone defect in rats using collagen-binding basic fibroblast growth factor combined with collagen scaffolds. Journal of Periodontology, 90, 1043–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gonzalez-Masis, J., Cubero-Sesin, J., Corrales-Urena, Y., Gonzalez-Camacho, S., Mora-Ugalde, N., Baizan-Rojas, M., Loaiza, R., Vega-Baudrit, S., & Gonzalez-Paz, R. (2020). Increased fibroblast metabolic activity of collagen scaffolds via the addition of propolis nanoparticles. Materials, 13(14), 3118.

    Article  CAS  PubMed Central  Google Scholar 

  66. Kammerer, P., Scholz, M., Baudisch, M., Liese, J., Wegner, K., Frerich, B., & Lang, H. (2017). Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells Int, 2017, 3548435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Elango, J., Selvaganapathy, R., Lazzari, G., Bao, B., & Wu, W. (2020). Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. International Journal of Biological Macromolecules, 163, 9–18.

    Article  CAS  PubMed  Google Scholar 

  68. Grier, W., Chang, R., Ramsey, M., & Harley, B. (2019). The influence of cyclic tensile strain on multi-compartment collagen-GAG scaffolds for tendon-bone junction repair. Connective Tissue Research, 60, 530–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, O., Sultan, M., Hong, H., Lee, Y., Lee, J., Lee, H., Kim, S., & Park, C. (2020). Recent advances in fluorescent silk fibroin. Frontiers in Materials, 7, 50.

    Article  Google Scholar 

  70. Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65, 457–470.

    Article  CAS  PubMed  Google Scholar 

  71. Fan, H., Liu, H., Toh, S. L., & Goh, J. C. H. (2009). Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials, 30, 4967–4977.

    Article  CAS  PubMed  Google Scholar 

  72. Rajkhowa, R., Gupta, V. B., & Kothari, V. K. (2000). Tensile stress-strain and recovery behavior of Indian silk fibers and their structural dependence. Journal of Applied Polymer Science, 77, 2418–2429.

    Article  CAS  Google Scholar 

  73. Leong, N. L., Petrigliano, F. K., & McAllister, D. R. (2014). Current tissue engineering strategies in anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research. Part A, 102, 1614–1624.

    Article  PubMed  CAS  Google Scholar 

  74. Mengsteab, P. Y., Nair, L. S., & Laurencin, C. T. (2016). The past, present and future of ligament regenerative engineering. Regenerative Medicine, 11, 871–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Santin, M., Motta, A., Freddi, G., & Cannas, M. (1999). In vitro evaluation of the inflammatory potential of the silk fibroin. Journal of Biomedical Materials Research, 46, 382–389.

    Article  CAS  PubMed  Google Scholar 

  76. Motta, A., Maniglio, D., Migliaresi, C., Kim, H., Wan, X., Hu, X., & Kaplan, D. L. (2009). Silk fibroin processing and thrombogenic responses. Journal of Biomaterials Science, Polymer Edition, 20, 1875–1897.

    Article  CAS  Google Scholar 

  77. Preda, R. C., Leisk, G., Omenetto, F., & Kaplan, D. L. (2013). Bioengineered silk proteins to control cell and tissue functions. Methods in Molecular Biology, 996, 19–41.

    Article  CAS  PubMed  Google Scholar 

  78. Minoura, N., Tsukada, M., & Nagura, M. (1990). Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 11, 430–434.

    Article  CAS  PubMed  Google Scholar 

  79. Wray, L. S., Hu, X., Gallego, J., Georgakoudi, I., Omenetto, F. G., Schmidt, D., & Kaplan, D. L. (2011). Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 99, 89–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ko, J. S., Yoon, K., Ki, C. S., Kim, H., Bae, D., Lee, K., Park, Y. H., & Um, I. (2013). Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution. International Journal of Biological Macromolecules, 55, 161–168.

    Article  CAS  PubMed  Google Scholar 

  81. Pritchard, E. M., Valentin, T., Panilaitis, B., Omenetto, F., & Kaplan, D. L. (2013). Antibiotic-releasing silk biomaterials for infection prevention and treatment. Advanced Functional Materials, 23, 854–861.

    Article  CAS  PubMed  Google Scholar 

  82. Ha, S., Tonelli, A. E., & Hudson, S. M. (2005). Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 6, 1722–1731.

    Article  CAS  PubMed  Google Scholar 

  83. Zuo, B., Dai, L., & Wu, Z. (2006). Analysis of structure and properties of biodegradable regenerated silk fibroin fibers. Journal of Materials Science, 41, 3357–3361.

    Article  CAS  Google Scholar 

  84. Tellado, S. F., Chiera, S., Bonani, W., Poh, P. S. P., Migliaresi, C., Motta, A., Balmayor, E. R., & Griensven, M. V. (2018). Heparin functionalization increases retention of TGF-beta2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomaterialia, 72, 150–166.

    Article  CAS  Google Scholar 

  85. Zhi, Y., Jiang, J., Zhang, P., & Chen, S. (2019). Silk enhances the ligamentization of the polyethylene terephthalate artificial ligament in a canine anterior cruciate ligament reconstruction model. Artificial Organs, 43, E94–E108.

    Article  CAS  PubMed  Google Scholar 

  86. Deepthi, S., Jeevitha, K., Nivedhitha, S., Chennazhi, K. P., & Jayakumar, R. (2015). Chitosan–hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chemical Engineering Journal, 260, 478–485.

    Article  CAS  Google Scholar 

  87. Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39, 1644–1667.

    Article  CAS  Google Scholar 

  88. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351.

    Article  CAS  PubMed  Google Scholar 

  89. Moshaverinia, A., Xu, X., Chen, C., Ansari, S., Zadeh, H. H., Snead, M. L., & Shi, S. (2014). Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials, 35, 2642–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Majima, T., Funakosi, T., Iwasaki, N., Yamane, S., Harada, K., Nonaka, S., Minami, A., & Nishimura, S. (2005). Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. Journal of Orthopaedic Science, 10, 302–307.

    Article  CAS  PubMed  Google Scholar 

  91. Burdick, J. A., Chung, C., Jia, X., Randolph, M. A., & Langer, R. (2005). Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 6, 386–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cristino, S., Grassi, F., Toneguzzi, S., Piacentini, A., Grigolo, B., Santi, S., Riccio, M., Tognana, E., Facchini, A., & Lisignoli, G. (2005). Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. Journal of Biomedical Materials Research. Part A, 73, 275–283.

    Article  CAS  PubMed  Google Scholar 

  93. Bartold, P. M., Xiao, Y., Lyngstaadas, S. P., Paine, M. L., & Snead, M. L. (2006). Principles and applications of cell delivery systems for periodontal regeneration. Periodontology, 2000(41), 123–135.

    Article  Google Scholar 

  94. Araque-Monros, M. C., Garcia-Cruz, D. M., Escobar-Ivirico, J. L., Gil-Santos, L., Monleon-Pradas, M., & Mas-Estelles, J. (2020). Regenerative and resorbable PLA/HA hybrid construct for tendon/ligament tissue engineering. Annals of Biomedical Engineering, 48, 757–767.

    Article  CAS  PubMed  Google Scholar 

  95. Fujioka-Kobayashi, M., Muller, H., Mueller, A., Lussi, A., Sculean, A., Schmidlin, P. R., & Miron, R. J. (2017). In vitro effects of hyaluronic acid on human periodontal ligament cells. BMC Oral Health, 17, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jay, G. D., Torres, J. R., Rhee, D. K., Helminen, J. H., Hytinnen, M. M., Cha, C., Elsaid, K., Kim, K., Cui, Y., & Warman, M. L. (2007). Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis and Rheumatism, 56, 3662–3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar, P., Oka, M., Toguchida, J., Kobayashi, M., Uchida, E., Nakamura, T., & Tanaka, K. (2001). Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. Journal of Anatomy, 199, 241–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: A short review. Trends in Biomaterials & Artificial Organs, 18, 18–23.

    Google Scholar 

  99. Peluso, G., Petillo, O., Ranieri, M., Santin, M., Ambrosio, L., Calabro, D., Avallone, B., & Balsamo, G. (1994). Chitosan-mediated stimulation of macrophage function. Biomaterials, 15, 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  100. VandeVord, P. J., Matthew, W. T., DeSilva, S. P., Mayton, L., Wu, B., & Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59, 585–590.

    Article  CAS  PubMed  Google Scholar 

  101. Pang, E. K., Paik, J. W., Kim, S. K., Jung, U. W., Kim, C. S., Cho, K. S., Kim, C. K., & Choi, S. H. (2005). Effects of chitosan on human periodontal ligament fibroblasts in vitro and on bone formation in rat calvarial defects. Journal of Periodontology, 76, 1526–1533.

    Article  CAS  PubMed  Google Scholar 

  102. Ge, S., Zhao, N., Wang, L., Yu, M., Liu, H., Song, A., Huang, J., Wang, G., & Yang, P. (2012). Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. International Journal of Nanomedicine, 7, 5405–5414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chesnutt, B. M., Yuan, Y., Buddington, K., Haggard, W. O., & Bumgardner, J. D. (2009). Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Engineering Part A, 15, 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, Y., & Zhang, M. (2004). Cell growth and function on calcium phosphate reinforced chitosan scaffolds. Journal of Materials Science. Materials in Medicine, 15, 255–260.

    Article  CAS  PubMed  Google Scholar 

  105. Thein-Han, W. W., & Misra, R. D. K. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 1182–1197.

    Article  CAS  PubMed  Google Scholar 

  106. Amir, L. R., Soeroso, Y., Fatma, D., Sunarto, H., Sulijaya, B., Idrus, E., Rahdewati, H., Tjokrovonco, A. M., Izumi, K., Abbas, B., & Latief, F. D. (2020). Periodontal ligament cell sheets and RGD-modified chitosan improved regeneration in the horizontal periodontal defect model. Eur J Dent, 14, 306–314.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science. Materials in Medicine, 23, 3041–3051.

    Article  CAS  PubMed  Google Scholar 

  108. Bahrami, N., Bayat, M., Ai, A., Khanmohammadi, M., Ai, J., Ahmadi, A., Salehi, M., Ebrahimi-Barough, S., Ghodarzi, A., Karimi, R., Mohamadnia, A., & Rahimi, A. (2018). Differentiation of periodontal ligament stem cells into osteoblasts on hybrid alginate/polyvinyl alcohol/hydroxyapatite nanofibrous scaffolds. Archives of Neuroscience, 5(4), e74267–e74269.

    Google Scholar 

  109. Moshaverinia, A., Chen, C., Xu, X., Akiyama, K., Ansari, S., Zadeh, H. H., & Shi, S. (2014). Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Engineering Part A, 20, 611–621.

    CAS  PubMed  Google Scholar 

  110. Higashi, T., Nagamori, E., Sone, T., Matsunaga, S., & Fukui, K. (2004). A novel transfection method for mammalian cells using calcium alginate microbeads. Journal of Bioscience and Bioengineering, 97, 191–195.

    Article  CAS  PubMed  Google Scholar 

  111. Kuo, C. K., & Ma, P. X. (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 22, 511–521.

    Article  CAS  PubMed  Google Scholar 

  112. Funakoshi, T., Majima, T., Iwasaki, N., Yamane, S., Masuko, T., Minami, A., Harada, K., Tamura, H., Tokura, S., & Nishimura, S. (2005). Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. Journal of Biomedical Materials Research. Part A, 74, 338–346.

    Article  PubMed  CAS  Google Scholar 

  113. Irie, T., Majima, T., Sawaguchi, N., Funakoshi, T., Nishimura, S., & Minami, A. (2011). Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: A rabbit medial collateral ligament reconstruction model. Journal of Biomedical Materials Research. Part A, 97, 111–117.

    Article  PubMed  CAS  Google Scholar 

  114. Ansari, S., Diniz, I. M., Chen, C., Sarrion, P., Tamayol, A., Wu, B. M., & Moshaverinia, A. (2017). Human periodontal ligament- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.201700670

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lin, H. Y., & Yeh, C. T. (2010). Alginate-crosslinked chitosan scaffolds as pentoxifylline delivery carriers. Journal of Materials Science. Materials in Medicine, 21, 1611–1620.

    Article  CAS  PubMed  Google Scholar 

  116. Shi, P., Li, Y., Zhang, L., Zuo, Y., Wu, M., & Wang, H. (2007). Fabrication of n-HA/CS porous scaffold carrying ampicillin-loaded microspheres. Materials Science Forum, 544–545, 941–944.

    Article  Google Scholar 

  117. Ansari, S., Diniz, I. M., Chen, C., Aghaloo, T., Wu, B. M., Shi, S., & Moshaverinia, A. (2017). Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage. Journal of Materials Science. Materials in Medicine, 28, 162.

    Article  PubMed  CAS  Google Scholar 

  118. Shao, H., Lee, Y., Chen, C., Wang, J., & Young, T. (2010). Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials, 31, 4695–4705.

    Article  CAS  PubMed  Google Scholar 

  119. Saatcioglu, E., Ulag, S., Sahin, A., Yilmaz, B. K., Ekren, N., Inan, A. T., Palaci, Y., Ustundag, C. B., & Gunduz, O. (2021). Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration. European Polymer Journal, 148, 110357.

    Article  CAS  Google Scholar 

  120. Wu, J., Liu, M., Wang, L., & Guan, G. (2020). Influence of silk fibroin/sodium alginate coatings on the mineralization of silk fibroin fiber artificial ligament prototypes. Textile Research Journal, 90, 1590–1601.

    Article  CAS  Google Scholar 

  121. Beldjilali-Labro, M., Garcia, A. G., Farhat, F., Bedoui, F., Grosset, J. F., Dufresne, M., & Legallais, C. (2018). Biomaterials in tendon and skeletal muscle tissue engineering: Current trends and challenges. Materials (Basel), 11(7), 1116.

    Article  CAS  Google Scholar 

  122. Chen, J. C., Lin, K. P., Lee, T. C., Fu, Y. C., & Lin, K. J. (2021). Biomechanical evaluation of a fin-type implant compared to traditional buttress plate for the stabilization of the posteromedial fragment in tibial plateau split fractures. Journal of Medical and Biological Engineering, 41, 742–749.

    Google Scholar 

  123. Krudwig, W. (2002). Anterior cruciate ligament reconstruction using an alloplastic ligament of polyethylene terephthalate (PET-Trevira((R))-hochfest). Follow-up study. Bio-Medical Materials and Engineering, 12, 59–67.

    PubMed  Google Scholar 

  124. Choi, S., Yoo, M., Lee, S., Lee, H., Son, D., Jung, J., Noh, I., & Kim, C. W. (2015). Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. Journal of Biomedical Materials Research. Part A, 103, 3072–3080.

    Article  CAS  PubMed  Google Scholar 

  125. Claes, S., Verdonk, P., Forsyth, R., & Bellemans, J. (2011). The “ligamentization” process in anterior cruciate ligament reconstruction: What happens to the human graft? A systematic review of the literature. American Journal of Sports Medicine, 39, 2476–2483.

    Article  PubMed  Google Scholar 

  126. Jiang, J., Ai, C., Zhan, Z., Zhang, P., Wan, F., Chen, J., Hao, W., Wang, Y., Yao, J., Shao, Z., Chen, T., Zhou, L., & Chen, S. (2016). Enhanced fibroblast cellular ligamentization process to polyethylene terepthalate artificial ligament by silk fibroin coating. Artificial Organs, 40, 385–393.

    Article  CAS  PubMed  Google Scholar 

  127. Li, H., Li, J., Jiang, J., Lv, F., Chang, J., Chen, S., & Wu, C. (2017). An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Acta Biomaterialia, 54, 399–410.

    Article  CAS  PubMed  Google Scholar 

  128. Wang, S., Ge, Y., Ai, C., Jiang, J., Cai, J., Sheng, D., Wan, F., Liu, X., Hao, Y., Chen, J., & Chen, S. (2018). Enhance the biocompatibility and osseointegration of polyethylene terephthalate ligament by plasma spraying with hydroxyapatite in vitro and in vivo. International Journal of Nanomedicine, 13, 3609–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, H., Jiang, J., Ge, Y., Xu, J., Zhang, P., Zhong, W., & Chen, S. (2013). Layer-by-layer hyaluronic acid-chitosan coating promoted new collagen ingrowth into a poly(ethylene terephthalate) artificial ligament in a rabbit medical collateral ligament (MCL) reconstruction model. Journal of Biomaterials Science, Polymer Edition, 24, 431–446.

    Article  CAS  Google Scholar 

  130. Schwach, G., & Vert, M. (1999). In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction. International Journal of Biological Macromolecules, 25, 283–291.

    Article  CAS  PubMed  Google Scholar 

  131. Kadonishi, Y., Deie, M., Takata, T., & Ochi, M. (2012). Acceleration of tendon-bone healing in anterior cruciate ligament reconstruction using an enamel matrix derivative in a rat model. Journal of Bone and Joint Surgery. British Volume, 94, 205–209.

    Article  CAS  PubMed  Google Scholar 

  132. Hanhan, S., Ejzenberg, A., Goren, K., Saba, F., Suki, Y., Sharon, S., Shilo, D., Waxman, J., Spitzer, E., Shahar, R., Atkins, A., Liebergall, M., Blumenfeld, A., Deutsch, D., & Haze, A. (2016). Skeletal ligament healing using the recombinant human amelogenin protein. Journal of Cellular and Molecular Medicine, 20, 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith, C. A., Tennent, T. D., Pearson, S. E., & Beach, W. R. (2003). Fracture of Bilok interference screws on insertion during anterior cruciate ligament reconstruction. Arthroscopy, 19, E115-117.

    Article  PubMed  Google Scholar 

  134. Barber, F. A., & Hrnack, S. A. (2013). Poly L-lactide co-glycolide/beta-tricalcium phosphate interference screw fixation for bone-patellar tendon bone anterior cruciate ligament reconstruction. The Journal of Knee Surgery, 26, 423–428.

    Article  PubMed  Google Scholar 

  135. Smedt, M. D. (1998). Les prothèses du ligament croisé anterieur: Analyse d’un échec. Acta Orthopaedica Belgica, 64, 422–433.

    PubMed  Google Scholar 

  136. Pinto, V. C., Ramos, T., Alves, A. S. F., Xavier, J., Tavares, P. J., Moreira, P. M. G. P., & Guedes, R. M. (2017). Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection. Engineering Failure Analysis, 71, 63–71.

    Article  CAS  Google Scholar 

  137. Surrao, D. C., Waldman, S. D., & Amsden, B. G. (2012). Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomaterialia, 8, 3997–4006.

    Article  CAS  PubMed  Google Scholar 

  138. Chen, B., Shen, C., Chen, S., & Chen, A. F. (2010). Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer, 51, 4667–4672.

    Article  CAS  Google Scholar 

  139. Anderson, K. S., Lim, S. H., & Hillmyer, M. A. (2003). Toughening of polylactide by melt blending with linear low-density polyethylene. Journal of Applied Polymer Science, 89, 3757–3768.

    Article  CAS  Google Scholar 

  140. Saini, P., Arora, M., & Kumar, M. N. V. R. (2016). Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 107, 47–59.

    Article  CAS  PubMed  Google Scholar 

  141. Pinese, C., Leroy, A., Nottelet, B., Gagnieu, C., Coudane, J., & Garric, X. (2017). Rolled knitted scaffolds based on PLA-pluronic copolymers for anterior cruciate ligament reinforcement: A step by step conception. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105, 735–743.

    Article  CAS  PubMed  Google Scholar 

  142. Araque-Monros, M. C., Gamboa-Martinez, T. C., Santos, L. G., Bernabe, S. G., Pradas, M. M., & Estelles, J. M. (2013). New concept for a regenerative and resorbable prosthesis for tendon and ligament: Physicochemical and biological characterization of PLA-braided biomaterial. Journal of Biomedical Materials Research. Part A, 101, 3228–3237.

    PubMed  Google Scholar 

  143. Sarukawa, J., Takahashi, M., Abe, M., Suzuki, D., Tokura, S., Furuike, T., & Tamura, H. (2011). Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. Journal of Biomaterials Science, Polymer Edition, 22, 717–732.

    Article  CAS  Google Scholar 

  144. Pinto, V. C., Costa-Almeida, R., Rodrigues, I., Guardao, L., Soares, R., & Guedes, R. M. (2017). Exploring the in vitro and in vivo compatibility of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites: Prospects for tendon and ligament applications. Journal of Biomedical Materials Research. Part A, 105, 2182–2190.

    Article  CAS  Google Scholar 

  145. Yuan, X., Mak, A. F. T., & Yao, K. (2002). Comparative observation of accelerated degradation of poly(l-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polymer Degradation and Stability, 75, 45–53.

    Article  CAS  Google Scholar 

  146. Sahoo, S., Toh, S. L., & Goh, J. C. H. (2010). PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 95, 19–28.

    Article  PubMed  CAS  Google Scholar 

  147. Yu, J., Lee, A., Lin, W., Lin, C., Wu, Y., & Tsai, W. (2014). Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Engineering Part A, 20, 1896–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Thomas, M., Arora, A., & Katti, D. S. (2014). Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation. Materials Science & Engineering, C: Materials for Biological Applications, 45, 320–332.

    Article  CAS  Google Scholar 

  149. Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H., Oh, J., Akaike, T., & Cho, C. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24, 801–808.

    Article  CAS  PubMed  Google Scholar 

  150. Li, W., Cooper, J. A., Mauck, R. L., & Tuan, R. S. (2006). Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomaterialia, 2, 377–385.

    Article  PubMed  Google Scholar 

  151. Park, C. H., Rios, H. F., Jin, Q., Bland, M. E., Flanagan, C. L., Hollister, S. J., & Giannobile, W. V. (2010). Biomimetic hybrid scaffolds for engineering human tooth–ligament interfaces. Biomaterials, 31, 5945–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Doyle, A. D., Wang, F. W., Matsumoto, K., & Yamada, K. M. (2009). One-dimensional topography underlies three-dimensional fibrillar cell migration. Journal of Cell Biology, 184, 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pauly, H. M., Sathy, B. N., Olvera, D., McCarthy, H. O., Kelly, D. J., Popat, K. C., Dunne, N. J., & Donahue, T. L. H. (2017). Hierarchically structured electrospun scaffolds with chemically conjugated growth factor for ligament tissue engineering. Tissue Engineering Part A, 23, 823–836.

    Article  CAS  PubMed  Google Scholar 

  154. Pauly, H., Kelly, D., Popat, K., Easley, J., Palmer, R., & Donahue, T. L. H. (2019). Mechanical properties of a hierarchical electrospun scaffold for ovine anterior cruciate ligament replacement. Journal of Orthopaedic Research, 37, 421–430.

    Article  CAS  PubMed  Google Scholar 

  155. Seal, B. L., Otero, T. C., & Panitch, A. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 34, 147–230.

    Article  Google Scholar 

  156. Alshomer, F., Chaves, C., & Kalaskar, D. M. (2018). Advances in tendon and ligament tissue engineering: materials perspective. Journal of Materials, 2018, 1–17.

    Article  CAS  Google Scholar 

  157. Ryu, K., Saito, M., Kurosaka, D., Kitasato, S., Omori, T., Hayashi, H., Kayama, T., & Marumo, K. (2020). Enhancement of tendon-bone interface healing and graft maturation with cylindrical titanium-web (TW) in a miniature swine anterior cruciate ligamentreconstruction model: histological and collagen-based analysis. BMC Musculoskeletal Disorders, 21, 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Noyes, F. R., & Grood, E. S. (1976). The strength of the anterior cruciate ligament in humans and Rhesus. Journal of Bone and Joint Surgery. American Volume, 58, 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  159. Viateau, V., Manassero, M., Anagnostou, F., Guerard, S., Mitton, D., & Migonney, V. (2013). Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: A 3-month and 12-month study. Arthroscopy, 29, 1079–1088.

    Article  PubMed  Google Scholar 

  160. Chandrashekar, N., Mansouri, H., Slauterbeck, J., & Hashemi, J. (2006). Sex-based differences in the tensile properties of the human anterior cruciate ligament. Journal of Biomechanics, 39, 2943–2950.

    Article  PubMed  Google Scholar 

  161. Leroux, A., Maurice, E., Viateau, V., & Migonney, V. (2019). Feasibility study of the elaboration of a biodegradable and bioactive ligament made of poly(ε-caprolactone)-pNaSS grafted fibers for the reconstruction of anterior cruciate ligament: In vivo experiment. IRBM, 40, 38–44.

    Article  Google Scholar 

  162. Rangel, A., Nguyen, T. N., Egles, C., & Migonney, V. (2021). Different real-time degradation scenarios of functionalized poly(ε-caprolactone) for biomedical applications. Journal of Applied Polymer Science, 138(17), 50479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported in part by the Ministry of Science and Technology of the Republic of China, Taiwan, under Grants MOST 109-2221-E-002-048.

Author information

Authors and Affiliations

Authors

Contributions

K-WY had the idea for the article, K-WY and J-YH are equally contributed and performed the literature search and data analysis, together with drafted. Y-YH critically revised the work.

Corresponding author

Correspondence to Yi-You Huang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, JY., Yang, KW. & Huang, YY. Materials Properties and Application Strategy for Ligament Tissue Engineering. J. Med. Biol. Eng. 42, 281–291 (2022). https://doi.org/10.1007/s40846-022-00706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00706-7

Keywords

Navigation