Skip to main content

Parkinson’s Disease Classification Using Machine Learning Approaches and Resting-State EEG



Diagnosis of Parkinson’s disease (PD) is generally based on family medical history, physical examination, and response to medication. Objective tools using machine learning algorithms have been developed to aid in PD diagnosis; however, feature extraction is time consuming, computationally intensive, and difficult to implement in clinical settings. This study compared the performance of two methods, namely a support vector machine (SVM) and convolutional neural network (CNN), in the classification of patients with PD based on resting-state electroencephalography (EEG).


In total, 39 patients with PD and 40 healthy controls participated in the experiment. Mean frequency, relative power, coherence, sample entropy, and multiscale entropy were calculated as features.


The accuracies of the SVM using 548 selected features and that of the CNN using 2992 extracted features were 88.88% and 98.66%, respectively. The accuracy of the CNN using raw data was 97.54%. Furthermore, the CNN model using features required 1272 s for training and 0.07 s for testing, whereas the CNN model using raw data required 994 s for training and 0.32 s for testing.


Our results imply that a CNN model taking raw data as inputs can automatically select the salient features, thereby reducing the required training time and achieving high classification performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.


  1. Amin, S. U., Alsulaiman, M., Muhammad, G., Bencherif, M. A., & Hossain, M. S. (2019). Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. in IEEE Access, 7, 18940–18950.

    Article  Google Scholar 

  2. Belardinelli, P., Azodi-Avval, R., Ortiz, E., Naros, G., Grimm, F., Weiss, D., & Gharabaghi, A. (2019). Intraoperative localization of spatially and spectrally distinct resting-state networks in Parkinson’s disease. Journal of Neurosurgery, 132(4), 1234–1242.

    Article  PubMed  Google Scholar 

  3. Betrouni, N., Delval, A., Chaton, L., Defebvre, L., Duits, A., Moonen, A. … Dujardin, K. (2019). Electroencephalography-based machine learning for cognitive profiling in Parkinson’s disease: Preliminary results. Movement Disorders, 34(2), 210–217.

    Article  PubMed  Google Scholar 

  4. Blesa, J., Trigo-Damas, I., Dileone, M., Del Rey, N. L., Hernandez, L. F., & Obeso, J. A. (2017). Compensatory mechanisms in Parkinson’s disease: Circuits adaptations and role in disease modification. Experimental Neurology, 298(Pt B), 148–161.

    CAS  Article  PubMed  Google Scholar 

  5. Boonstra, T. W., Nikolin, S., Meisener, A. C., Martin, D. M., & Loo, C. K. (2016). Change in mean frequency of resting-state electroencephalography after transcranial direct current stimulation. Frontiers in Human Neuroscience, 10, 270.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chaturvedi, M., Hatz, F., Gschwandtner, U., Bogaarts, J. G., Meyer, A., Fuhr, P., & Roth, V. (2017). Quantitative EEG (QEEG) measures differentiate Parkinson’s disease (PD) patients from healthy controls (HC). Frontiers in Aging Neuroscience 9:3, 2017.

  7. Chaudhuri, K. R., & Schapira, A. H. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. The Lancet Neurology, 8(5), 464–474.

    CAS  Article  PubMed  Google Scholar 

  8. Chen, J. X., Zhang, P. W., Mao, Z. J., Huang, Y. F., Jiang, D. M., & Zhang, Y. N. (2019). Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. in IEEE Access, 7, 44317–44328.

    Article  Google Scholar 

  9. Cho, K. O., & Jang, H. J. (2020). Comparison of different input modalities and network structures for deep learning-based seizure detection. Scientific Reports, 10, 122.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Christensen, J. A., Zoetmulder, M., Koch, H., Frandsen, R., Arvastson, L., Christensen, S. R. … Sorensen, H. B. (2014). Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson’s and Parkinson’s disease. Journal of Neuroscience Methods, 235, 262–276.

    Article  PubMed  Google Scholar 

  11. Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9, 1–16.

    Article  Google Scholar 

  12. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. doi:

    CAS  Article  PubMed  Google Scholar 

  13. Gongora, M., Velasques, B., Cagy, M., Teixeira, S., & Ribeiro, P. (2019). EEG coherence as a diagnostic tool to measure the initial stages of Parkinson Disease. Medical Hypotheses, 123, 74–78.

    Article  PubMed  Google Scholar 

  14. Grinberg, L. T., Rueb, U., Alho, A. T., & Heinsen, H. (2010). Brainstem pathology and non-motor symptoms in Parkinson’s disease. Journal of the Neurological Sciences, 289(1), 81–88.

    Article  PubMed  Google Scholar 

  15. Han, C. X., Wang, J., Yi, G., & Che, Y. Q. (2013). Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cognitive Neurodynamics, 7, 351–359.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heida, T., Poppe, N. R., de Vos, C. C., van Putten, M. J., & van Vugt, J. P. (2014). Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease. Clinical Neurophysiology, 125(9), 1819–1825.

    CAS  Article  PubMed  Google Scholar 

  17. Jaramillo-Jimenez, A., Suarez-Revelo, J. X., Ochoa-Gomez, J. F., Carmona Arroyave, J. A., Bocanegra, Y., Lopera, F. … Aarsland, D. (2021). Resting-state EEG alpha/theta ratio related to neuropsychological test performance in Parkinson’s Disease. Clinical Neurophysiology, 132(3), 756–764.

    Article  PubMed  Google Scholar 

  18. Liu, Q., Cai, J. F., Fan, S. Z., Abbod, M., Shieh, J. S., Kung, Y. C., & Lin, L. (2019). Spectrum analysis of EEG signals using CNN to model patient’s consciousness level based on anesthesiologists’ experience. in IEEE Access, 7, 53731–53742.

    Article  Google Scholar 

  19. Maitín, A. M., García-Tejedor, A. J., & Muñoz, J. P. R. (2020). Machine learning approaches for detecting Parkinson’s disease from EEG analysis: A systematic review. Applied Sciences, 10(23), 8662.

    CAS  Article  Google Scholar 

  20. Marsden, C. D., & Obeso, J. A. (1994). The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain, 117(4), 877–897.

    Article  PubMed  Google Scholar 

  21. Moazami-Goudarzi, M., Sarnthein, J., Michels, L., Moukhtieva, R., & Jeanmonod, D. (2008). Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients. Neuroimage, 41(3), 985–997.

    Article  PubMed  Google Scholar 

  22. Olde Dubbelink, K. T., Stoffers, D., Deijen, J. B., Twisk, J. W., Stam, C. J., & Berendse, H. W. (2013). Cognitive decline in Parkinson’s disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiology of Aging, 34(2), 408–418.

    Article  PubMed  Google Scholar 

  23. Pezard, L., Jech, R., & Ruzicka, E. (2001). Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clinical Neurophysiology, 112(1), 38–45.

    CAS  Article  PubMed  Google Scholar 

  24. Sajda, P. (2006). Machine learning for detection and diagnosis of disease. Annual Review of Biomedical Engineering, 8, 537–565.

    CAS  Article  PubMed  Google Scholar 

  25. Sarnthein, J., & Jeanmonod, D. (2007). High thalamocortical theta coherence in patients with Parkinson’s disease. Journal of Neuroscience, 27(1), 124–131.

    CAS  Article  PubMed  Google Scholar 

  26. Siuly, S., Alcin, O. F., Kabir, E., Sengur, A., Wang, H., Zhang, Y., & Whittaker, F. (2020). A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(9), 1966–1976.

    Article  PubMed  Google Scholar 

  27. Tang, Z., Li, C., & Sun, S. (2017). Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik - International Journal for Light and Electron Optics, 130, 11–18.

    Article  Google Scholar 

  28. Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), e0224365.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Yi, G. S., Wang, J., Deng, B., & Wei, X. L. (2017). Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease. Cognitive Neurodynamics, 11(2), 147–160.

    Article  PubMed  Google Scholar 

  30. Yuvaraj, R., Murugappan, M., Mohamed Ibrahim, N., Iqbal, M., Sundaraj, K., Mohamad, K. … Satiyan, M. (2014). On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease during emotion processing. Behavioral and Brain Functions, 10(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported in part by research grants from Ministry of Science and Technology (MOST 109 2221-E-130-003), Taiwan.


Not applicable.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chia-Yen Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval and Consent to Participate

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of Chang Gung Memorial Hospital (IRB number: 107-0857 C). Written informed consent was obtained from individual or guardian participants.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, CY., Huang, YZ. Parkinson’s Disease Classification Using Machine Learning Approaches and Resting-State EEG. J. Med. Biol. Eng. 42, 263–270 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Electroencephalography
  • Parkinson’s disease
  • Resting-state
  • Support vector machine
  • Convolutional neural network