Skip to main content

Reliability of Lower Limb Alignment Measures Based on Human Body Surface Points



This study intends to evaluate the effectiveness and reliability of defining lower limb alignment based on body surface points. Furthermore, the correlation between measurement error and bone morphology is also evaluated.


A body surface points based method for identifying lower limb alignment is proposed by three steps: Firstly, the CT images of 16 patients (32 legs) are obtained from the hospital CT database. In this manner, the reference anatomical points and the body surface points are measured. Secondly, transformation between body surface points and the equivalent joint centers are defined. Then the lower limb alignment is constructed. Finally, the statistical analysis is carried out to evaluate the error and stability.


The coronal alignment can be accurately defined by the body surface points. The deviation caused by central positioning of the knee joint of the femur is 0.385 ± 0.306° (range: 0.004–1.519; 95% CI 0.279–0.492), and the error is not correlated with bone length (R = -0.015), bone width (R = 0.105), and bone length-to-width ratio(R = -0.080); the deviation due to central positioning of the tibial knee joint is 0.658 ± 0.509° (range: 0.040–1.815; 95% CI 0.482–0.835), and the error is independent of bone length (R = − 0.110), bone width (R = − 0.150), and bone length-to-width ratio(R = 0.117); the deviation due to central positioning of the ankle joint is 0.387 ± 0.301° (range: 0.007–0.963°; 95% CI 0.283–0.492), and the error is not correlated with bone length (R = − 0.062), bone width (R = 0.047), and bone length-to-width ratio(R = − 0.105).


The method of defining equivalent joint center based on body surface points is applicable to different anatomical positioning. The identification of lower limb alignment is noninvasive and has high accuracy, especially for coronal alignment. However, it has limitations in the sagittal view. In addition, there is no correlation between the error and bone morphology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Hunt, M. A., Fowler, P. J., Birmingham, T. B., Jenkyn, T. R., & Giffin, J. R. (2006). Foot rotational effects on radiographic measures of lower limb alignment. Canadian Journal of Surgery, 49(6), 401–406.

    PubMed Central  Google Scholar 

  2. Matsumoto, T., Hashimura, M., Takayama, K., Ishida, K., Kawakami, Y., Matsuzaki, T., Nakano, N., Matsushita, T., Kuroda, R., & Kurosaka, M. (2015). A radiographic analysis of alignment of the lower extremities–initiation and progression of varus-type knee osteoarthritis. Osteoarthritis Cartilage, 23(2), 217–223.

    CAS  Article  PubMed  Google Scholar 

  3. Brouwer, G. M., van Tol, A. W., Bergink, A. P., Belo, J. N., Bernsen, R. M., Reijman, M., Pols, H. A., & Bierma-Zeinstra, S. M. (2007). Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis and Rheumatism, 56(4), 1204–1211.

    CAS  Article  PubMed  Google Scholar 

  4. Tanamas, S., Hanna, F. S., Cicuttini, F. M., Wluka, A. E., Berry, P., & Urquhart, D. M. (2009). Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis and Rheumatism, 61(4), 459–467.

    Article  PubMed  Google Scholar 

  5. Pauwels, F. (1980). Biomechanics of the locomotor apparatus. Springer-Verlag.

    Book  Google Scholar 

  6. Hsu, R. W., Himeno, S., Coventry, M. B., & Chao, E. Y. (1990). Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clinical Orthopaedics and Related Research, 255, 215–227.

    Article  Google Scholar 

  7. Rand, J. A., & Coventry, M. B. (1988). Ten-year evaluation of geometric total knee arthroplasty. Clinical Orthopaedics and Related Research, 232, 168–173.

    Article  Google Scholar 

  8. Jeffery, R. S., Morris, R. W., & Denham, R. A. (1991). Coronal alignment after total knee replacement. Journal of Bone and Joint Surgery, 73(5), 709–714.

    CAS  Article  Google Scholar 

  9. Hankemeier, S., Hufner, T., Wang, G., Kendoff, D., Zeichen, J., Zheng, G., & Krettek, C. (2006). Navigated open-wedge high tibial osteotomy: Advantages and disadvantages compared to the conventional technique in a cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy, 14(10), 917–921.

    CAS  Article  PubMed  Google Scholar 

  10. Inkpen KB, Hodgson AJ (1999) Accuracy and Repeatability of Joint Centre Location in Computer-Assisted Knee Surgery. Medical Image Computing and Computer-Assisted Intervention, Proceedings. Springer-Verlag, pp. 1072–1079.

  11. Akamatsu, Y., Kobayashi, H., Kusayama, Y., Kumagai, K., & Saito, T. (2017). Opening wedge high tibial osteotomy using combined computed tomography-based and image-free navigation system. Arthroscopy Techniques, 6(4), e1145–e1151.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goleski, P., Warkentine, B., Lo, D., Gyuricza, C., Kendoff, D., & Pearle, A. D. (2008). Reliability of navigated lower limb alignment in high tibial osteotomies. American Journal of Sports Medicine, 36(11), 2179–2186.

    Article  Google Scholar 

  13. Iorio, R., Pagnottelli, M., Vadalà, A., Giannetti, S., Di Sette, P., Papandrea, P., Conteduca, F., & Ferretti, A. (2013). Open-wedge high tibial osteotomy: Comparison between manual and computer-assisted techniques. Knee Surgery Sports Traumatology Arthroscopy, 21(1), 113–119.

    CAS  Article  Google Scholar 

  14. Van den Bempt, M., Van Genechten, W., Claes, T., & Claes, S. (2016). How accurately does high tibial osteotomy correct the mechanical axis of an arthritic varus knee? A systematic review. The Knee, 23(6), 925–935.

    Article  PubMed  Google Scholar 

  15. Ehrig, R. M., Taylor, W. R., Duda, G. N., & Heller, M. O. (2006). A survey of formal methods for determining the centre of rotation of ball joints. Journal of Biomechanics, 39(15), 2798–2809.

    Article  PubMed  Google Scholar 

  16. Upadhyaya, S., & Lee, W. S. (2013). Survey of formal methods of hip joint center calculation in human studies. Apcbee Procedia, 7, 27–31.

    Article  Google Scholar 

  17. Lopomo, N., Sun, L., Zaffagnini, S., Giordano, G., & Safran, M. R. (2010). Evaluation of formal methods in hip joint center assessment: An in vitro analysis. Clinical Biomechanics, 25(3), 206–212.

    Article  PubMed  Google Scholar 

  18. Momi, E. D., Lopomo, N., Cerveri, P., Zaffagnini, S., Safran, M. R., & Ferrigno, G. (2009). In-vitro experimental assessment of a new robust algorithm for hip joint centre estimation. Journal of Biomechanics, 42(8), 989–995.

    Article  PubMed  Google Scholar 

  19. Stindel, E., Gil, D., Briard, J. L., Merloz, P., Dubrana, F., & Lefevre, C. (2005). Detection of the center of the hip joint in computer-assisted surgery: An evaluation study of the Surgetics algorithm. Computer Aided Surgery, 10(3), 133–139.

    Article  PubMed  Google Scholar 

  20. Huiskes, R., van Dijk, R., de Lange, A., Woltring, H. J., & van Rens, T. J. G. (1985). Kinematics of the Human Knee Joint. In: N. Berme, A. E. Engin, K. M. Correia da Silva (Eds.), Biomechanics of Normal and Pathological Human Articulating Joints. Dordrecht, Springer, pp. 165–187.

  21. Siston, R. A., Daub, A. C., Giori, N. J., Goodman, S. B., & Delp, S. L. (2005). Evaluation of methods that locate the center of the ankle for computer-assisted total knee arthroplasty. Clinical Orthopaedics and Related Research, 439, 129–135.

    Article  PubMed  Google Scholar 

  22. Pikulkaew, T., Pornrattanamaneewong, C., & Chareancholvanich, K. (2012). Anatomical landmark to locate the ankle center for determination of the mechanical axis of the lower extremity in Thai subjects. Journal of the Medical Association of Thailand, 95(Suppl 9), S1–S5.

    PubMed  Google Scholar 

  23. Nofrini, L., Slomczykowski, M., Iacono, F., & Marcacci, M. (2004). Evaluation of accuracy in ankle center location for tibial mechanical axis identification. Journal of Investigative Surgery the Official Journal of the Academy of Surgical Research, 17(1), 23–29.

    CAS  Article  PubMed  Google Scholar 

  24. Jenny, J. Y., Boeri, C., & Ballonzoli, L. (2005). Coronal alignment of the lower limb. Acta Orthopaedica, 76(3), 403–407.

    Article  PubMed  Google Scholar 

  25. Picardo, N. E., Khan, W., & Johnstone, D. (2012). Computer-assisted navigation in high tibial osteotomy: A systematic review of the literature. Open Orthopaedics Journal, 6, 305–312.

    Article  Google Scholar 

  26. Reising, K., Strohm, P. C., Hauschild, O., Schmal, H., Khattab, M., Südkamp, N. P., & Niemeyer, P. (2013). Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. Knee Surgery Sports Traumatology Arthroscopy Official Journal of the Esska., 21(1), 181–188.

    Article  Google Scholar 

  27. Song, S. J., & Bae, D. K. (2016). Computer-assisted navigation in high tibial osteotomy. Clinics in Orthopedic Surgery, 8(4), 349–357.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Livyatan, H., Yaniv, Z., & Joskowicz, L. (2003). Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Transactions on Medical Imaging., 22(11), 1395–1406.

    Article  PubMed  Google Scholar 

  29. Pandey, P., Guy, P., Hodgson, A. J., & Abugharbieh, R. (2018). Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: A comparative study. International Journal of Computer Assisted Radiology & Surgery, 13(10), 1515–1524.

    Article  Google Scholar 

  30. Rodriguez y Baena, F., Hawke, T., & Jakopec, M. (2013). A bounded iterative closest point method for minimally invasive registration of the femur. Journal of Engineering in Medicine, 227(10), 1135–1144.

    Article  PubMed  Google Scholar 

Download references


This work was partly supported by the National Key R&D Program of China (No. 2018YFB1307800), National Natural Science Foundation of China (No. 51775367), Tianjin Science and Technology Plan Project (No. 18PTLCSY00080, No. 20201193, No. 18YFSDZC00010).

Author information

Authors and Affiliations



CL, TS equally to research design, analysis of data, and drafting of the manuscript. XM, YS, TZ contributed equally to critical revisions of the manuscript as well as approval of the final submission. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Tao Sun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This article used anonymous data from an existing collection of CT scans and does not contain any studies with human participants performed by any of the authors. Informed consent for this type of study is not required. The authors have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Sun, T., Ma, X. et al. Reliability of Lower Limb Alignment Measures Based on Human Body Surface Points. J. Med. Biol. Eng. 42, 234–241 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Alignment
  • Body surface points
  • Orthopedic surgery
  • Osteoarthritis