Hunt, M. A., Fowler, P. J., Birmingham, T. B., Jenkyn, T. R., & Giffin, J. R. (2006). Foot rotational effects on radiographic measures of lower limb alignment. Canadian Journal of Surgery, 49(6), 401–406.
PubMed Central
Google Scholar
Matsumoto, T., Hashimura, M., Takayama, K., Ishida, K., Kawakami, Y., Matsuzaki, T., Nakano, N., Matsushita, T., Kuroda, R., & Kurosaka, M. (2015). A radiographic analysis of alignment of the lower extremities–initiation and progression of varus-type knee osteoarthritis. Osteoarthritis Cartilage, 23(2), 217–223. https://doi.org/10.1016/j.joca.2014.11.015
CAS
Article
PubMed
Google Scholar
Brouwer, G. M., van Tol, A. W., Bergink, A. P., Belo, J. N., Bernsen, R. M., Reijman, M., Pols, H. A., & Bierma-Zeinstra, S. M. (2007). Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis and Rheumatism, 56(4), 1204–1211. https://doi.org/10.1002/art.22515
CAS
Article
PubMed
Google Scholar
Tanamas, S., Hanna, F. S., Cicuttini, F. M., Wluka, A. E., Berry, P., & Urquhart, D. M. (2009). Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis and Rheumatism, 61(4), 459–467. https://doi.org/10.1002/art.24336
Article
PubMed
Google Scholar
Pauwels, F. (1980). Biomechanics of the locomotor apparatus. Springer-Verlag. https://doi.org/10.1007/978-3-642-67138-8
Book
Google Scholar
Hsu, R. W., Himeno, S., Coventry, M. B., & Chao, E. Y. (1990). Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clinical Orthopaedics and Related Research, 255, 215–227. https://doi.org/10.1097/00003086-199006000-00029
Article
Google Scholar
Rand, J. A., & Coventry, M. B. (1988). Ten-year evaluation of geometric total knee arthroplasty. Clinical Orthopaedics and Related Research, 232, 168–173. https://doi.org/10.1097/00003086-198807000-00022
Article
Google Scholar
Jeffery, R. S., Morris, R. W., & Denham, R. A. (1991). Coronal alignment after total knee replacement. Journal of Bone and Joint Surgery, 73(5), 709–714. https://doi.org/10.1302/0301-620X.73B5.1894655
CAS
Article
Google Scholar
Hankemeier, S., Hufner, T., Wang, G., Kendoff, D., Zeichen, J., Zheng, G., & Krettek, C. (2006). Navigated open-wedge high tibial osteotomy: Advantages and disadvantages compared to the conventional technique in a cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy, 14(10), 917–921. https://doi.org/10.1007/s00167-006-0035-8
CAS
Article
PubMed
Google Scholar
Inkpen KB, Hodgson AJ (1999) Accuracy and Repeatability of Joint Centre Location in Computer-Assisted Knee Surgery. Medical Image Computing and Computer-Assisted Intervention, Proceedings. Springer-Verlag, pp. 1072–1079. https://doi.org/10.1007/10704282_116
Akamatsu, Y., Kobayashi, H., Kusayama, Y., Kumagai, K., & Saito, T. (2017). Opening wedge high tibial osteotomy using combined computed tomography-based and image-free navigation system. Arthroscopy Techniques, 6(4), e1145–e1151. https://doi.org/10.1016/j.eats.2017.03.036
Article
PubMed
PubMed Central
Google Scholar
Goleski, P., Warkentine, B., Lo, D., Gyuricza, C., Kendoff, D., & Pearle, A. D. (2008). Reliability of navigated lower limb alignment in high tibial osteotomies. American Journal of Sports Medicine, 36(11), 2179–2186. https://doi.org/10.1177/0363546508319314
Article
Google Scholar
Iorio, R., Pagnottelli, M., Vadalà, A., Giannetti, S., Di Sette, P., Papandrea, P., Conteduca, F., & Ferretti, A. (2013). Open-wedge high tibial osteotomy: Comparison between manual and computer-assisted techniques. Knee Surgery Sports Traumatology Arthroscopy, 21(1), 113–119. https://doi.org/10.1007/s00167-011-1785-5
CAS
Article
Google Scholar
Van den Bempt, M., Van Genechten, W., Claes, T., & Claes, S. (2016). How accurately does high tibial osteotomy correct the mechanical axis of an arthritic varus knee? A systematic review. The Knee, 23(6), 925–935. https://doi.org/10.1016/j.knee.2016.10.001
Article
PubMed
Google Scholar
Ehrig, R. M., Taylor, W. R., Duda, G. N., & Heller, M. O. (2006). A survey of formal methods for determining the centre of rotation of ball joints. Journal of Biomechanics, 39(15), 2798–2809. https://doi.org/10.1016/j.jbiomech.2005.10.002
Article
PubMed
Google Scholar
Upadhyaya, S., & Lee, W. S. (2013). Survey of formal methods of hip joint center calculation in human studies. Apcbee Procedia, 7, 27–31. https://doi.org/10.1016/j.apcbee.2013.08.007
Article
Google Scholar
Lopomo, N., Sun, L., Zaffagnini, S., Giordano, G., & Safran, M. R. (2010). Evaluation of formal methods in hip joint center assessment: An in vitro analysis. Clinical Biomechanics, 25(3), 206–212. https://doi.org/10.1016/j.clinbiomech.2009.11.008
Article
PubMed
Google Scholar
Momi, E. D., Lopomo, N., Cerveri, P., Zaffagnini, S., Safran, M. R., & Ferrigno, G. (2009). In-vitro experimental assessment of a new robust algorithm for hip joint centre estimation. Journal of Biomechanics, 42(8), 989–995. https://doi.org/10.1016/j.jbiomech.2009.02.031
Article
PubMed
Google Scholar
Stindel, E., Gil, D., Briard, J. L., Merloz, P., Dubrana, F., & Lefevre, C. (2005). Detection of the center of the hip joint in computer-assisted surgery: An evaluation study of the Surgetics algorithm. Computer Aided Surgery, 10(3), 133–139. https://doi.org/10.3109/10929080500229975
Article
PubMed
Google Scholar
Huiskes, R., van Dijk, R., de Lange, A., Woltring, H. J., & van Rens, T. J. G. (1985). Kinematics of the Human Knee Joint. In: N. Berme, A. E. Engin, K. M. Correia da Silva (Eds.), Biomechanics of Normal and Pathological Human Articulating Joints. Dordrecht, Springer, pp. 165–187.
Siston, R. A., Daub, A. C., Giori, N. J., Goodman, S. B., & Delp, S. L. (2005). Evaluation of methods that locate the center of the ankle for computer-assisted total knee arthroplasty. Clinical Orthopaedics and Related Research, 439, 129–135. https://doi.org/10.1097/01.blo.0000170873.88306.56
Article
PubMed
Google Scholar
Pikulkaew, T., Pornrattanamaneewong, C., & Chareancholvanich, K. (2012). Anatomical landmark to locate the ankle center for determination of the mechanical axis of the lower extremity in Thai subjects. Journal of the Medical Association of Thailand, 95(Suppl 9), S1–S5.
PubMed
Google Scholar
Nofrini, L., Slomczykowski, M., Iacono, F., & Marcacci, M. (2004). Evaluation of accuracy in ankle center location for tibial mechanical axis identification. Journal of Investigative Surgery the Official Journal of the Academy of Surgical Research, 17(1), 23–29. https://doi.org/10.1080/ivs.17.1.23.29
CAS
Article
PubMed
Google Scholar
Jenny, J. Y., Boeri, C., & Ballonzoli, L. (2005). Coronal alignment of the lower limb. Acta Orthopaedica, 76(3), 403–407. https://doi.org/10.1080/17453670510041303
Article
PubMed
Google Scholar
Picardo, N. E., Khan, W., & Johnstone, D. (2012). Computer-assisted navigation in high tibial osteotomy: A systematic review of the literature. Open Orthopaedics Journal, 6, 305–312. https://doi.org/10.2174/1874325001206010305
Article
Google Scholar
Reising, K., Strohm, P. C., Hauschild, O., Schmal, H., Khattab, M., Südkamp, N. P., & Niemeyer, P. (2013). Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. Knee Surgery Sports Traumatology Arthroscopy Official Journal of the Esska., 21(1), 181–188. https://doi.org/10.1007/s00167-012-2088-1
Article
Google Scholar
Song, S. J., & Bae, D. K. (2016). Computer-assisted navigation in high tibial osteotomy. Clinics in Orthopedic Surgery, 8(4), 349–357. https://doi.org/10.4055/cios.2016.8.4.349
Article
PubMed
PubMed Central
Google Scholar
Livyatan, H., Yaniv, Z., & Joskowicz, L. (2003). Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Transactions on Medical Imaging., 22(11), 1395–1406. https://doi.org/10.1109/TMI.2003.819288
Article
PubMed
Google Scholar
Pandey, P., Guy, P., Hodgson, A. J., & Abugharbieh, R. (2018). Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: A comparative study. International Journal of Computer Assisted Radiology & Surgery, 13(10), 1515–1524. https://doi.org/10.1007/s11548-018-1788-5
Article
Google Scholar
Rodriguez y Baena, F., Hawke, T., & Jakopec, M. (2013). A bounded iterative closest point method for minimally invasive registration of the femur. Journal of Engineering in Medicine, 227(10), 1135–1144. https://doi.org/10.1177/0954411913500948
Article
PubMed
Google Scholar