Augustin, G., Davila, S., Udilljak, T., Staroveski, T., Brezak, D., & Babic, S. (2012). Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. International Orthopaedics, 36(7), 1449–1456. https://doi.org/10.1007/s00264-012-1491-z
Article
PubMed
PubMed Central
Google Scholar
Eriksson, A. R., & Albrektsson, T. (1983). Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. The Journal of Prosthetic Dentistry, 50(1), 101–107. https://doi.org/10.1016/0022-3913(83)90174-9
CAS
Article
PubMed
Google Scholar
Abouzgia, M. B., & James, D. F. (1997). Temperature rise during drilling through bone. International Journal of Oral & Maxillofacial Implants, 12(3), 342–353.
CAS
Google Scholar
Reingewirtz, Y., Szmukler-Moncler, S., & Senger, B. (1997). Influence of different parameters on bone heating and drilling time in implantology. Clinical Oral Implants Research, 8(3), 189–197. https://doi.org/10.1034/j.1600-0501.1997.080305.x
CAS
Article
PubMed
Google Scholar
Tehemar, S. H. (1999). Factors affecting heat generation during implant site preparation: A review of biologic observations and future considerations. International Journal of Oral and Maxillofacial Implants, 14(1), 127–136.
CAS
PubMed
Google Scholar
Pandey, R. K., & Panda, S. S. (2013). Drilling of bone: A comprehensive review. Journal of Clinical Orthopaedics and Trauma, 4(1), 15–30. https://doi.org/10.1016/j.jcot.2013.01.002
Article
PubMed
PubMed Central
Google Scholar
Koopaie, M., Kolahdouz, S., & Kolahdouz, E. M. (2019). Comparison of wear and temperature of zirconia and tungsten carbide tools in drilling bone: In vitro and finite element analysis. British Journal of Oral and Maxillofacial Surgery, 57(6), 557–565. https://doi.org/10.1016/j.bjoms.2019.05.002
CAS
Article
PubMed
Google Scholar
Misic, T., Markovic, A., Todorovic, A., Colic, S., Miodrag, S., & Milicic, B. (2011). An in vitro study of temperature changes in type 4 bone during implant placement: Bone condensing versus bone drilling. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 112(1), 28–33. https://doi.org/10.1016/j.tripleo.2010.08.010
Article
PubMed
Google Scholar
Strbac, G. D., Unger, E., Donner, R., Bijak, M., Watzek, G., & Zechner, W. (2014). Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model. Clinical Oral Implants Research, 25(6), 665–674. https://doi.org/10.1111/clr.12032
Article
PubMed
Google Scholar
Heydari, H., Cheraghi Kazerooni, N., Zolfaghari, M., Ghoreishi, M., & Tahmasbi, V. (2018). Analytical and experimental study of effective parameters on process temperature during cortical bone drilling. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(9), 871–883. https://doi.org/10.1177/0954411918796534
Article
Google Scholar
Amewoui, F., Le Coz, G., Bonnet, A. S., & Moufki, A. (2020). An analytical modeling with experimental validation of bone temperature rise in drilling process. Medical Engineering & Physics, 84, 151–160. https://doi.org/10.1016/j.medengphy.2020.07.007
Article
Google Scholar
Can, M., Koluaçik, S., Bahçe, E., Gokce, H., & Tecellioglu, F. S. (2021). Investigation of thermal damage in bone drilling: Hybrid processing method and pathological evaluation of existing methods. Journal of the Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/j.jmbbm.2021.105030
Article
PubMed
Google Scholar
Singh, R. P., Pandey, P. M., & Mridha, A. R. (2020). An in-vitro study of temperature rise during rotary ultrasonic bone drilling of human bone. Medical Engineering & Physics, 79, 33–43. https://doi.org/10.1016/j.medengphy.2020.03.002
Article
Google Scholar
Sui, J., Wang, C., & Sugita, N. (2020). Experimental study of temperature rise during bone drilling process. Medical Engineering & Physics, 78, 64–73. https://doi.org/10.1016/j.medengphy.2020.01.007
Article
Google Scholar
Dahibhate, R. V., Jaju, S. B., & Sarode, R. I. (2021). Development of mathematical model for prediction of bone drilling temperature. Materials Today: Proceedings, 38, 2732–2736. https://doi.org/10.1016/j.matpr.2020.08.537
CAS
Article
Google Scholar
Bai, X., Hou, S., Li, K., Qu, Y., & Zhang, T. (2019). Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods. Medical Engineering & Physics, 69, 1–7. https://doi.org/10.1016/j.medengphy.2019.06.010
Article
Google Scholar
Marković, A., Lazić, Z., Mišić, T., Šćepanović, M., Todorović, A., Thakare, K., & Glišić, M. (2016). Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites: Thermographic analysis on bovine ribs. Vojnosanitetski Pregled, 73(8), 744–750. https://doi.org/10.2298/vsp141208041m
Article
PubMed
Google Scholar
Feldmann, A., Wandel, J., & Zysset, P. (2016). Reducing temperature elevation of robotic bone drilling. Medical Engineering & Physics, 38(12), 1495–1504. https://doi.org/10.1016/j.medengphy.2016.10.001
Article
Google Scholar
Chen, Y. C., Hsiao, C. K., Ciou, J. S., Tsai, Y. J., & Tu, Y. K. (2016). Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones. Medical Engineering & Physics, 38(11), 1314–1321. https://doi.org/10.1016/j.medengphy.2016.08.009
Article
Google Scholar
Tu, Y. K., Chen, L. W., Huang, C. C., Chen, Y. C., Tsai, H. H., & Lin, L. C. (2008, May). Finite element simulation of drill bit and bone thermal contact during drilling. In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (pp. 1268–1271). IEEE. https://doi.org/10.1109/ICBBE.2008.645
Liu, Y. F., Wu, J. L., Zhang, J. X., Peng, W., & Liao, W. Q. (2018). Numerical and experimental analyses on the temperature distribution in the dental implant preparation area when using a surgical guide. Journal of Prosthodontics, 27(1), 42–51. https://doi.org/10.1111/jopr.12488
Article
PubMed
Google Scholar
Cheng, K. J., Kan, T. S., Liu, Y. F., Zhu, W. D., Zhu, F. D., Wang, W. B., & Dong, X. T. (2021). Accuracy of dental implant surgery with robotic position feedback and registration algorithm: An in-vitro study. Computers in Biology and Medicine, 129, 104153. https://doi.org/10.1016/j.compbiomed.2020.104153
Article
PubMed
Google Scholar
D.W. Hahn, M.N. Ozişik. (2012) Heat Conduction Fundamentals, Heat Conduction, Third Edition, 1–39.
Miller, E. R., & Ullrey, D. E. (1987). The pig as a model for human nutrition. Annual Review of Nutrition, 7(1), 361–382. https://doi.org/10.1146/annurev.nu.07.070187.002045
CAS
Article
PubMed
Google Scholar
Jin, T., & Cai, G. Q. (2001). Analytical thermal models of oblique moving heat source for deep grinding and cutting. Journal of Manufacturing Science and Engineering, 123(2), 185–190. https://doi.org/10.1115/1.1343458
Article
Google Scholar