Skip to main content
Log in

A Comparison of Three Brain Atlases for Temporal Lobe Epilepsy Prediction

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

An accurate and reliable brain atlas, as the role of navigation, should be effective and vital to differentiate the patients with temporal lobe epilepsy (TLE) from normal controls (NCs). The purpose of this study is to compare the classification performance of identifying TLE patients based on different atlases, which were Desikan-killiany (DK) atlas, Destrieux (DS) atlas and Brainnetome (BN) atlas.

Methods

Twenty-three patients with TLE and thirty NCs were recruited for our study. Seven morphological features of ROIs were calculated firstly. Then individual morphological brain network were constructed. After that, least absolute shrinkage and selection operator (LASSO) algorithm was used in feature selection. Finally, classification with support vector machine (SVM) and leave-one-out cross-validation (LOOCV) were employed for the training and evaluation of the classifiers.

Results

The performance of the experiments using BN atlas was better than DK atlas and DS atlas. LASSO algorithm used for feature selection can improve the classification performance. The SVM analysis using BN atlas revealed best classification with accuracy of 92.45% and 90.57% respectively based on network properties and morphological features.

Conclusion

This study suggested that the choice of atlases is important in the computer-aided classification of TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Engel, J., Jr. (2001). Mesial temporal lobe epilepsy: What have we learned? The Neuroscientist, 7(4), 340–352. https://doi.org/10.1177/107385840100700410

    Article  PubMed  Google Scholar 

  2. Riley, J. D., Franklin, D. L., Choi, V., et al. (2010). Altered white matter integrity in temporal lobe epilepsy: Association with cognitive and clinical profiles. Epilepsia, 51(4), 536–545. https://doi.org/10.1111/j.1528-1167.2009.02508.x

    Article  PubMed  Google Scholar 

  3. Oyegbile, T. O., Dow, C., Jones, J., et al. (2004). The nature and course of neuropsychological morbidity in chronic temporal lobe epilepsy. Neurology, 62(10), 1736–1742. https://doi.org/10.1212/01.wnl.0000125186.04867.34

    Article  CAS  PubMed  Google Scholar 

  4. Bell, B., Lin, J. J., Seidenberg, M., & Hermann, B. (2011). The neurobiology of cognitive disorders in temporal lobe epilepsy. Nature Reviews. Neurology, 7(3), 154–164. https://doi.org/10.1038/nrneurol.2011.3

    Article  PubMed  Google Scholar 

  5. Gleichgerrcht, E., Munsell, B. C., Alhusaini, S., et al. (2021). Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. Neuroimage Clinical, 31, 102765. https://doi.org/10.1016/j.nicl.2021.102765

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-based parcellations of the human brain. Nature Reviews Neuroscience, 19(11), 672–686. https://doi.org/10.1038/s41583-018-0071-7

    Article  CAS  PubMed  Google Scholar 

  7. Desikan, R. S., Ségonne, F., Fischl, B., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  8. Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010

    Article  PubMed  Google Scholar 

  9. Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  10. Chaudhary, S., Kumaran, S. S., Goyal, V., et al. (2021). Cortical thickness and gyrification index measuring cognition in Parkinson’s disease. International Journal of Neuroscience, 131(10), 984–993. https://doi.org/10.1080/00207454.2020.1766459

    Article  CAS  Google Scholar 

  11. Jirsaraie, R. J., Sheffield, J. M., & Barch, D. M. (2018). Neural correlates of global and specific cognitive deficits in schizophrenia. Schizophrenia Research, 201, 237–242. https://doi.org/10.1016/j.schres.2018.06.017

    Article  PubMed  Google Scholar 

  12. Fan, L., Li, H., Zhuo, J., et al. (2016). The human Brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526. https://doi.org/10.1093/cercor/bhw157

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y. L., Zhao, X. A., Ng, S. H., et al. (2019). Prediction of the clinical severity of progressive supranuclear palsy by diffusion tensor imaging. Journal of Clinical Medicine, 9(1), 40. https://doi.org/10.3390/jcm9010040

    Article  PubMed Central  Google Scholar 

  14. Long, Z., Jing, B., Guo, R., et al. (2018). A Brainnetome atlas based mild cognitive impairment identification using Hurst exponent. Front Aging Neuroscience, 10, 103. https://doi.org/10.3389/fnagi.2018.00103

    Article  Google Scholar 

  15. Shi, W., Fan, L., & Jiang, T. (2021). Developing neuroimaging biomarker for brain diseases with a machine learning framework and the Brainnetome atlas. Neuroscience Bulletin, 37(10), 1523–1525. https://doi.org/10.1007/s12264-021-00722-8

    Article  PubMed  Google Scholar 

  16. Lai, C., Guo, S., Cheng, L., et al. (2017). Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images. In Eighth international conference on graphic and image processing. International Society for Optics and Photonics.

  17. Rudie, J. D., Colby, J. B., & Salamon, N. (2015). Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Research, 117, 63–69. https://doi.org/10.1016/j.eplepsyres.2015.09.005

    Article  PubMed  Google Scholar 

  18. Alhusaini, S., Doherty, C. P., Palaniyappan, L., et al. (2012). Asymmetric cortical surface area and morphology changes in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 53(6), 995–1003. https://doi.org/10.1111/j.1528-1167.2012.03457.x

    Article  PubMed  Google Scholar 

  19. Ronan, L., Alhusaini, S., Scanlon, C., Doherty, C. P., Delanty, N., & Fitzsimons, M. (2012). Widespread cortical morphologic changes in juvenile myoclonic epilepsy: Evidence from structural MRI. Epilepsia, 53(4), 651–658. https://doi.org/10.1111/j.1528-1167.2012.03413.x

    Article  PubMed  Google Scholar 

  20. Ristić, A. J., Daković, M., Kerr, M., Kovačević, M., Parojčić, A., & Sokić, D. (2015). Cortical thickness, surface area and folding in patients with psychogenic nonepileptic seizures. Epilepsy Research, 112, 84–91. https://doi.org/10.1016/j.eplepsyres.2015.02.015

    Article  PubMed  Google Scholar 

  21. Santana, M. T., Jackowski, A. P., Britto Fdos, S., et al. (2014). Gender and hemispheric differences in temporal lobe epilepsy: A VBM study. Seizure, 23(4), 274–279. https://doi.org/10.1016/j.seizure.2013.12.006

    Article  PubMed  Google Scholar 

  22. Schnack, H. G., van Haren, N. E., Brouwer, R. M., et al. (2015). Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex, 25(6), 1608–1617. https://doi.org/10.1093/cercor/bht357

    Article  PubMed  Google Scholar 

  23. Li, W., Yang, C., Shi, F., et al. (2017). Construction of individual morphological brain networks with multiple morphometric features. Frontiers in Neuroanatomy, 11, 34. https://doi.org/10.3389/fnana.2017.00034

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, X. H., Jiao, Y., & Li, L. (2018). Diagnostic model for attention-deficit hyperactivity disorder based on interregional morphological connectivity. Neuroscience Letters, 685, 30–34. https://doi.org/10.1016/j.neulet.2018.07.029

    Article  CAS  PubMed  Google Scholar 

  25. Homan, P., Argyelan, M., DeRosse, P., et al. (2019). Structural similarity networks predict clinical outcome in early-phase psychosis. Neuropsychopharmacology, 44(5), 915–922. https://doi.org/10.1038/s41386-019-0322-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sepehrband, F., Lynch, K. M., Cabeen, R. P., et al. (2018). Neuroanatomical morphometric characterization of sex differences in youth using statistical learning. NeuroImage, 172, 217–227. https://doi.org/10.1016/j.neuroimage.2018.01.065

    Article  PubMed  Google Scholar 

  27. Ota, K., Oishi, N., Ito, K., Fukuyama, H., SEAD-J Study Group. (2014). A comparison of three brain atlases for MCI prediction. Journal of Neuroscience Methods, 221, 139–150. https://doi.org/10.1016/j.jneumeth.2013.10.003

    Article  PubMed  Google Scholar 

  28. Long, Z., Huang, J., Li, B., et al. (2018). A Comparative atlas-based recognition of mild cognitive impairment with voxel-based morphometry. Frontiers in Neuroscience, 12, 916. https://doi.org/10.3389/fnins.2018.00916

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396

    Article  CAS  PubMed  Google Scholar 

  30. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  31. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80. https://doi.org/10.1109/42.906426

    Article  CAS  PubMed  Google Scholar 

  32. Fischl, B., van der Kouwe, A., Destrieux, C., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22. https://doi.org/10.1093/cercor/bhg087

    Article  PubMed  Google Scholar 

  33. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386. https://doi.org/10.3389/fnhum.2015.00386

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H., Jin, X., Zhang, Y., & Wang, J. (2016). Single-subject morphological brain networks: Connectivity mapping, topological characterization and test-retest reliability. Brain and Behavior: A Cognitive Neuroscience Perspective, 6(4), e00448. https://doi.org/10.1002/brb3.448

    Article  Google Scholar 

  35. Xin, W., Yanshuang, R., & Wensheng, Z. (2017). Classification of temporal lobe epilepsy with and without hippocampal sclerosis via two-level feature selection. DEStech Transactions on Computer Science and Engineering. https://doi.org/10.12783/dtcse/cst2017/12546

    Article  Google Scholar 

  36. Tibshirani, R. J. (1996). Regression Shrinkage and selection via the LASSO. Journal of the Royal Statistical Society. Series B: Methodological, 73(1), 273–282. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  37. Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology)., 73(3), 267–288. https://doi.org/10.1111/j.1467-9868.2011.00771.x

    Article  Google Scholar 

  38. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  39. Kamiya, K., Amemiya, S., Suzuki, Y., et al. (2016). Machine learning of DTI structural brain connectomes for lateralization of temporal lobe epilepsy. Magnetic Resonance in Medical Sciences, 15(1), 121–129. https://doi.org/10.2463/mrms.2015-0027

    Article  PubMed  Google Scholar 

  40. Ting, W., Duo, C., Qiqi, C., et al. (2018). Automatic lateralization of temporal lobe epilepsy based on MEG network features using support vector machines. Complexity, 2018, 1–10. https://doi.org/10.1155/2018/4325096

    Article  Google Scholar 

  41. Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9), 2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

    Article  Google Scholar 

  42. Li, S., Yuan, X., Pu, F., et al. (2014). Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. Journal of Neuroscience, 34(32), 10541–10553. https://doi.org/10.1523/JNEUROSCI.4356-13.2014

    Article  CAS  PubMed  Google Scholar 

  43. Bernhardt, B. C., Bonilha, L., & Gross, D. W. (2015). Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy & Behavior, 50, 162–170. https://doi.org/10.1016/j.yebeh.2015.06.005

    Article  Google Scholar 

  44. Gleichgerrcht, E., Kocher, M., & Bonilha, L. (2015). Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy. Epilepsia, 56(11), 1660–1668. https://doi.org/10.1111/epi.13133

    Article  PubMed  Google Scholar 

  45. Vaughan, D. N., Rayner, G., Tailby, C., & Jackson, G. D. (2016). MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology, 87(18), 1934–1942. https://doi.org/10.1212/WNL.0000000000003289

    Article  PubMed  Google Scholar 

  46. Li, W., Yang, C., Wu, S., et al. (2018). Alterations of graphic properties and related cognitive functioning changes in mild Alzheimer’s disease revealed by individual morphological brain network. Frontiers in Neuroscience, 12, 927. https://doi.org/10.3389/fnins.2018.00927

    Article  PubMed  PubMed Central  Google Scholar 

  47. King, D. J., & Wood, A. G. (2020). Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions. Network Neuroscience, 4(1), 274–291. https://doi.org/10.1162/netn_a_00123

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., & Parisot, S. (2018). Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage, 170, 5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by project Grants from Beijing Nova Program (xx2016120), National Natural Science Foundation of China (81101107, 31640035, 81601126), Natural Science Foundation of Beijing (4162008) and program for Scientific Research Project of Beijing Educational Committee (SQKM201710005013). We are thankful for the support from Intelligent Physiological Measurement and Clinical Translation and Beijing International Base for Scientific and Technological Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlan Yang.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose.

Ethical Approval

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, C., Li, Z. et al. A Comparison of Three Brain Atlases for Temporal Lobe Epilepsy Prediction. J. Med. Biol. Eng. 42, 11–20 (2022). https://doi.org/10.1007/s40846-021-00676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-021-00676-2

Keywords

Navigation