Skip to main content

A Review of MAC Layer for Wireless Body Area Network


The Wireless Body Area Network (WBAN), which comprises of a set of tiny, invasive/non-invasive, light-weight, high-energy-efficient biosensors that monitor human health for early diagnosis and therapy, has lately received a lot of interest from researchers. As present and rising tendencies in communications included with the tendencies in microelectronics and embedded system technologies the existing tech- niques of IEEE 802.15.4 and IEEE 802.15.6 standards are explored in WBANs. As a consequence, discussed the challenges of MAC layer in WBAN. Secondly, different multiple access techniques along with TDMA, CSMA/CA, Slotted Aloha and Hybrid are explored in terms of design goals. In literature, a number of Medium Access Control (MAC) protocols for WBANs have been suggested for addressing the partic- ular challenges associated with reliability, delay, collision and energy within the new research area. The design of MAC protocols is primarily based on multiple access techniques. Finally the general parameters of some popular MAC protocols are highlighted as performance metrics of WBANs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Zimmerman, T. G. (1996). Personal area networks: near- field intrabody communication. IBM systems Journal, 35, 609–617.

    Google Scholar 

  2. 2.

    Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., & Wu, H. (2019). A survey of routing protocols in WBAN for healthcare applications. Sensors (Switzerland), 19(7), 1638.

    Google Scholar 

  3. 3.

    Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11(6), 5561–5595.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive ra- dio wireless sensor networks: Applications, challenges and research trends. Sensors, 13(9), 11196–11228.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    F. M. Yurdal, “Wireless Medical Devices Wireless Technology in Medical Devices-1,” no. June, pp. 1–22, 2014.

  6. 6.

    K. S. Kwak, S. Ullah, and N. Ullah, “An overview of IEEE 802.15.6 standard,” 2010 3rd International Sympo- sium on Applied Sciences in Biomedical and Communica- tion Technologies, ISABEL 2010, pp. 2–7, 2010.

  7. 7.

    M. Thakur and M. Kaur, “Performance Upgradation Against Route Discovery using ABC Optimization in Wireless Body Area Network,” no. 1, pp. 1914–1918, 2019.

  8. 8.

    Zhou, J., Guo, A., Nguyen, H. T., & Su, S. (2015). Intelligent management of multiple access schemes in wireless body area network. Journal of Networks.

    Article  Google Scholar 

  9. 9.

    R. Ahmad and K. N. Salama, “Physical Sensors for Biomedical Applications,” Proceedings of IEEE Sensors, vol. 2018-October, pp. 1–3, 2018.

  10. 10.

    Meharouech, A., Elias, J., & Mehaoua, A. (2019). Moving towards body-to-body sensor networks for ubiquitous applications: A survey. Journal of Sensor and Actuator Networks, 8(2), 1–29.

    Google Scholar 

  11. 11.

    N. Rishani, H. Elayan, R. Shubair, and A. Kiourti, “Wearable, Epidermal, and Implantable Sensors for Medical Applications,” no. February, pp. 1–20, 2018. [Online]. Available:

  12. 12.

    Ullah, F., Khelil, A., Sheikh, A. A., Felemban, E., & Bojan, H. M. (2013). Towards automated self-tagging in emergency health cases”, in IEEE 15th interna- tional conference on e-health networking, applications and services (Healthcom 2013). IEEE, 2013, 658–663.

    Google Scholar 

  13. 13.

    Maresova, P., Javanmardi, E., Barakovic, S., Barakovic Husic, J., Tomsone, S., Krejcar, O., & Kuca, K. (2019). Con- sequences of chronic diseases and other limitations associated with old age - A scoping review. BMC Public Health.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Liu, Q., Mkongwa, K. G., & Zhang, C. (2021). Performance issues in wireless body area networks for the healthcare application: a survey and future prospects. SN Applied Sciences, 3(2), 1–19.

    Article  Google Scholar 

  15. 15.

    Ullah, F., Abdullah, A. H., Kaiwartya, O., Kumar, S., & Arshad, M. M. (2017). Medium access control (mac) for wireless body area network (wban): Superframe structure, multiple access technique, taxonomy, and challenges. Human-centric Computing and Information Sciences, 7(1), 34.

    Google Scholar 

  16. 16.

    E. C. Geoff Appelboom, M. E. Abraham, S. S. Bruce, E. L. Dumont, B. E. Zacharia, R. D’Amico, J. Slomian, J. Y. Reginster, O. Bruye`re, and E. S. Connolly, “Smart wearable body sensors for patient self-assessment and monitoring.” Archives of Public Health, vol. 72, no. 28, pp. 1–9, 2014.

  17. 17.

    Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors (Switzerland), 16(6), 1–33.

    Google Scholar 

  18. 18.

    Dias, D., & Cunha, J. P. S. (2018). Wearable health devices—vital sign monitoring, systems and technologies. Sensors (Switzerland), 18(8), 2414.

    Google Scholar 

  19. 19.

    Saboor, A., Ahmad, R., Ahmed, W., Kiani, A., Le Moullec, Y., & Alam, M. (2018). On research challenges in hybrid medium access control protocols for ieee 802.15.6 wbans. IEEE Sensors Journal, 19, 8543–8555.

    Google Scholar 

  20. 20.

    Jones, R. W., & Katzis, K. (2018). “5G and wireless body area networks”, 2018 IEEE Wireless Communications and Networking Conference Workshops. WCNCW, 2018, 373–378.

    Google Scholar 

  21. 21.

    Aswale, S., & Ghorpade, V. R. (2015). Survey of QoS routing protocols in wireless multimedia sensor networks. Journal of Computer Networks and Communications, 2015, 1–29.

    Google Scholar 

  22. 22.

    Zhan, Y., Xia, Y., & Anwar, M. (2016). GTS size adaptation algorithm for IEEE802.15.4 wireless networks. Ad Hoc Networks, 37, 486–498.

    Google Scholar 

  23. 23.

    S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, Moerman, S. Saleem, Z. Rahman, and K. S. Kwak, “A comprehensive survey of wireless body area net- works,” Journal of medical systems, 36: 1065–1094, 2012.

  24. 24.

    Howitt, I., & Gutierrez, J. A. (2003). IEEE 802.15.4 low rate - Wireless personal area network coexistence issues. IEEE Wireless Communications and Networking Conference, WCNC, 3, 1481–1486.

    Google Scholar 

  25. 25.

    M. Carlos-Mancilla, E. Lo´pez-Mellado, and M. Siller, “Wireless sensor networks formation: Approaches and techniques,” Journal of Sensors, 2016: 1-18, 2016.

  26. 26.

    Xia, F., Hao, R., Li, J., Xiong, N., Yang, L. T., & Zhang, Y. (2013). Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. Journal of Systems Architecture.

    Article  Google Scholar 

  27. 27.

    S. Femmam, M. I. Benakila, and L. George, “Beacon Cluster-Tree Construction for ZigBee/IEEE802.15.4 Networks,” Building Wireless Sensor Networks, pp. 115– 144, 2017.

  28. 28.

    Nepal, S., Dahal, S., & Shin, S. (2016). Does the IEEE 802.15.4 MAC protocol work well in wireless body area networks? Journal of Advances in Computer Net- works, 4(1), 52–58.

    Google Scholar 

  29. 29.

    Alam, M. M., Berder, O., Menard, D., & Sentieys, O. (2012). Tad-mac: traffic-aware dynamic mac protocol for wireless body area sensor networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 109–119.

    Google Scholar 

  30. 30.

    “Approved ieee draft amendment to ieee standard for information technology-telecommunications and in- formation exchange between systems-part 15.4:wire- less medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (lr-wpans): Amendment to add alter- nate phy (amendment of ieee std 802.15.4),” IEEE Approved Std P802.15.4a/D7, Jan 2007, 2007.

  31. 31.

    A. Koubaa, M. Alves, and E. Tovar, “Gts allocation analysis in ieee 802.15.4 for real-time wireless sensor networks,” in Proceedings 20th IEEE International Par- allel Distributed Processing Symposium, 2006, pp. 8 pp.–.

  32. 32.

    Yin, X., Ho, K., Zeng, D., Aickelin, U., Zhou, R., & Wang, H. (2015). Analysis and Comparison of the IEEE 802.15.4 and 802.15.6 Wireless Standards Based on MAC Layer. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9085, 5–6.

    Google Scholar 

  33. 33.

    “Ieee draft standard for information technology - telecommunications and information exchange be- tween systems - local and metropolitan area net- works - specific requirements - part 15.6: Wireless medium access control (mac) and physical layer (phy) specifications for wireless personal area net- works (wpans)used in or around a body.” IEEE P802.15.6/D04, June 2011, pp. 1–280, 2011.

  34. 34.

    Tachtatzis, C., Di Franco, F., Tracey, D. C., Timmons, N. F., & Morrison, J. (2012). “An energy analysis of IEEE 802.15.6 scheduled access modes for medical applications”, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications. Engineering, 89, 209–222.

    Google Scholar 

  35. 35.

    Ullah, S., & Tovar, E. (2015). Performance analysis of IEEE 802.15.6 contention-based MAC protocol. IEEE In- ternational Conference on Communications, 2015, 6146–6151.

    Google Scholar 

  36. 36.

    Ullah, S., Hassan, M. M., Shamim Hossain, M., & Alelaiwi, A. (2020). Performance evaluation of rts/cts scheme in beacon-enabled IEEE 802.15.6 mac protocol for wireless body area networks. Sensors (Switzerland), 20(8), 1–16.

    Google Scholar 

  37. 37.

    S. Ullah, B. Shen, S. Riazul Islam, P. Khan, S. Saleem, and K. Sup Kwak, “A study of mac protocols for wbans,” Sensors, vol. 10, no. 1, pp. 128–145, 2010.

  38. 38.

    Hwang, T. M., Jeong, S. Y., & Kang, S. J. (2018). Wireless TDMA-based body area network platform gathering multibiosignals synchronized with patient’s heartbeat. Wireless Communications and Mobile Computing, 2018, 1–14.

    Google Scholar 

  39. 39.

    F. Ullah, A. H. Abdullah, G. Abdul-Salaam, M. M. Ar- shad, and F. Masud, “CDASA-CSMA/CA: Contention differentiated adaptive slot allocation CSMA-CA for heterogeneous data in wireless body area networks,” KSII Transactions on Internet and Information Systems, vol. 11, no. 12, pp. 5835–5854, 2017.

  40. 40.

    Kim, B. S., Sung, T. E., & Kim, K. I. (2020). An NS-3 im- plementation and experimental performance analysis of IEEE 802.15.6 standard under different deployment scenarios. International Journal of Environmental Re- search and Public Health, 17(11), 1–31.

    Google Scholar 

  41. 41.

    Bhanumathi, V., & Sangeetha, C. P. (2017). A guide for the selection of routing protocols in WBAN for healthcare applications. Human-centric Computing and Informa- tion Sciences, 7(1), 1–19.

    Google Scholar 

  42. 42.

    Bouazzi, I., Zaidi, M., Usman, M., & Shamim, M. Z. M. (2021). A new medium access control mechanism for energy optimization in WSN: traffic control and data priority scheme. Eurasip Journal on Wireless Communications and Networking.

    Article  Google Scholar 

  43. 43.

    Kabara, J., & Calle, M. (2012). MAC protocols used by wireless sensor networks and a general method of performance evaluation. International Journal of Distributed Sensor Networks, 8, 834784.

    Google Scholar 

  44. 44.

    Movassaghi, S., Abolhasan, M., & Lipman, J. (2013). A review of routing protocols in wireless body area networks. Journal of Networks.

    Article  Google Scholar 

  45. 45.

    Isikman, A. O., Cazalon, L., Chen, F., & Li, P. (2011). Body area networks. Mobile Networks and Applications Journal, 16(2), 171–193.

    Google Scholar 

  46. 46.

    Abdu, A. I., Bayat, O., & Ucan, O. N. (2019). Design- ing insistence-aware medium access control protocol and energy conscious routing in quality-of-service- guaranteed wireless body area network. International Journal of Distributed Sensor Networks.

    Article  Google Scholar 

  47. 47.

    Shuai, J., Zou, W., & Zhou, Z. (2013). Priority-based adaptive timeslot allocation scheme for wireless body area network”, in 13th international symposium on com- munications and information technologies (ISCIT). IEEE, 2013, 609–614.

    Google Scholar 

  48. 48.

    Chowdhury, M. S., Khan, P., Jung, J., & Kwak, K. S. (2014). Modeling slotted aloha of wban in non-saturated conditions. KSII Transactions on Internet and Informa- tion Systems (TIIS), 8(6), 1901–1913.

    Google Scholar 

  49. 49.

    Y. Zhang and G. Dolmans, “A new priority- guaranteed mac protocol for emerging body area networks,” in 2009 Fifth International Conference on Wireless and Mobile Communications. IEEE, 2009, pp. 140–145.

  50. 50.

    Ullah, F., Abdullah, A. H., Kaiwartya, O., Lloret, J., & Arshad, M. M. (2017). EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommunication Systems, 75, 1–23.

    Google Scholar 

  51. 51.

    Rahman, M., Hong, C. S., Lee, S., Bang, Y.-C., et al. (2011). Atlas: A traffic load aware sensor mac design for collaborative body area sensor networks. Sensors, 11(12), 11560–11580.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lamprinos, I., Prentza, A., Sakka, E., & Koutsouris, D. (2005). Energy-efficient mac protocol for patient personal area networks”, in, IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2006, 3799–3802.

    Google Scholar 

  53. 53.

    Khan, Z. A., Rasheed, M. B., Javaid, N., & Robertson, B. (2014). Effect of packet inter-arrival time on the energy consumption of beacon enabled mac protocol for body area networks. Procedia Computer Science, 32, 579–586.

    Google Scholar 

  54. 54.

    S. Sarang, G. M. Stojanovic´, S. Stankovski, Zˇ . Trpovski, and M. Drieberg, “Energy-Efficient Asynchronous QoS MAC Protocol for Wireless Sensor Networks,” Wireless Communications and Mobile Computing, vol. 2020: 1-13, 2020.

  55. 55.

    Chakraborty, C., Gupta, B., Ghosh, S. K., Das, D. K., & Chakraborty, C. (2016). Telemedicine supported chronic wound tissue prediction using classification approaches. Journal of medical systems, 40(3), 68.

    PubMed  Google Scholar 

  56. 56.

    Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., & Han, G. (2013). A survey of body sensor networks. Sensors, 13(5), 5406–5447.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yoon, J. S., Ahn, G.-S., Joo, S.-S., & Lee, M. J. (2010). Pnp- mac: Preemptive slot allocation and non-preemptive transmission for providing qos in body area net- works”, in, 7th IEEE consumer communications and networking conference. IEEE, 2010, 1–5.

    Google Scholar 

  58. 58.

    I. Anjum, N. Alam, M. A. Razzaque, M. Mehedi Hassan, and A. Alamri, “Traffic priority and load adaptive mac protocol for qos provisioning in body sensor networks,” International Journal of Distributed Sensor Networks, vol. 9, no. 3, p. 205192, 2013.

  59. 59.

    Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., Prasad, M., & Prakash, S. (2018). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580.

    Google Scholar 

  60. 60.

    Zeng, D., & Guo, S. (2010). An energy aware mac protocol for wireless personal area networks nd international symposium on aware computing. IEEE, 2010, 171–176.

    Google Scholar 

  61. 61.

    Abdullah-Al-Wadud, M. (2013). A TDMA scheme for mobile sensor networks. International Journal of Distributed Sensor Networks, 9, 907583.

    Google Scholar 

  62. 62.

    Alam, M. N., & Kim, Y. C. (2016). Efficient MAC protocol for hybrid wireless network with heterogeneous sen sor nodes. Journal of Sensors, 1–16, 2016.

    Google Scholar 

  63. 63.

    Xia, F., Wang, L., Zhang, D., He, D., & Kong, X. (2014). An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 58(2), 125–138.

    Google Scholar 

  64. 64.

    Razzaque, M., Hong, C. S., Lee, S., et al. (2011). Data-centric multiobjective qos-aware routing protocol for body sensor networks. Sensors, 11(1), 917–937.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    L. Lin, K.-J. Wong, A. Kumar, S. L. Tan, and S. J. Phee, “An energy efficient mac protocol for mobile in-vivo body sensor networks,” in 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, 2011, pp. 95–100.

  66. 66.

    Le, T. T., & Moh, S. (2017). Link scheduling algorithm with interference prediction for multiple mobile WBANs. Sensors (Switzerland), 17(10), 2231.

    Google Scholar 

  67. 67.

    Wang, S.-L., Chen, Y. L., Kuo, A.M.-H., Chen, H.-M., & Shiu, Y. S. (2016). Design and evaluation of a cloud-based mobile health information recommendation system on wireless sensor networks. Computers & Electrical Engineering, 49, 221–235.

    Google Scholar 

  68. 68.

    Li, H., & Tan, J. (2009). Heartbeat-driven medium-access control for body sensor networks. IEEE transactions on information technology in biomedicine, 14(1), 44–51.

    PubMed  Google Scholar 

  69. 69.

    Timmons, N. F., & Scanlon, W. G. (2009). An adaptive energy efficient mac protocol for the medical body area network, 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology. IEEE, 2009, 587–593.

    Google Scholar 

  70. 70.

    Kyung Sup Kwak and Sana Ullah, “TaMAC-A traffic- adaptive MAC protocol for WBAN.pdf,” IEEE Globe- com 2010 Workshop on Mobile Computing and Emerging Communication Networks, p. 4, 2010.

  71. 71.

    M. Al Ameen, N. Ullah, M. S. Chowdhury, S. R. Islam, and K. Kwak, “A power efficient mac protocol for wireless body area networks,” EURASIP Journal on Wireless Communications and Networking, 2012: 33, 2012.

  72. 72.

    B. Pourmohseni and M. Eshghi, “MAC Protocol for Wireless Body Area Networks,” vol. 2, no. 7, pp. 393– 402, 2013.

  73. 73.

    Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2014). A cloud-assisted random linear net- work coding medium access control protocol for healthcare applications. Sensors (Switzerland), 14(3), 4806–4830.

    Google Scholar 

  74. 74.

    A. C¸ AlhAn, “A non-preemptive priority scheduling algorithm for improving priority data transmission delay in wireless body area networks.” Adhoc & Sensor Wireless Networks, vol. 34, 2016.

  75. 75.

    Yuan, X., Li, C., Yang, L., Yue, W., Zhang, B., & Ullah, S. (2016). A token-based dynamic scheduled MAC protocol for health monitoring. Eurasip Journal on Wireless Communications and Networking.

    Article  Google Scholar 

  76. 76.

    Ruan, L., Dias, M. P. I., & Wong, E. (2018). SmartBAN with periodic monitoring traffic: a performance study on low delay and high energy efficiency. IEEE Journal of Biomedical and Health Informatics, 22(2), 471–482.

    PubMed  Google Scholar 

  77. 77.

    Sun, G., Wang, K., Yu, H., Du, X., & Guizani, M. (2019). Priority-based medium access control for wireless body area networks with high-performance design. IEEE Internet of Things Journal, 6, 5363–5375.

    Google Scholar 

  78. 78.

    Wang, J., Sun, Y., Ji, Y., & Luo, S. (2019). Priority-aware price-based power control for co-located WBANs using stackelberg and bayesian games. Sensors (Switzerland), 19(12), 2664.

    Google Scholar 

  79. 79.

    Xie, Z., Huang, G., Zarei, R., Ji, Z., Ye, H., & He, J. (2020). A novel nest-based scheduling method for mobile wireless body area networks. Digital Communications and Networks, 6(4), 514–523.

    Google Scholar 

  80. 80.

    F. Solt, R. Benarrouch, G. Tochou, O. Facklam, A. Frappe, A. Cathelin, A. Kaiser, and J. M. Rabaey, “Energy Efficient Heartbeat-Based MAC Protocol for WBAN Employing Body Coupled Communication,” IEEE Access, vol. 8, pp. 182 966–182 983, 2020.

  81. 81.

    Y. Zia, F. Bashir, and K. N. Qureshi, “Dynamic su- perframe adaptation using group-based media access control for handling traffic heterogeneity in wire- less body area networks,” International Journal of Dis- tributed Sensor Networks, vol. 16, no. 8, 2020.

  82. 82.

    Kumar, A., Zhao, M., Wong, K. J., Guan, Y. L., & Chong, P. H. J. (2018). A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities. IEEE Access, 6, 76228–76262.

    Google Scholar 

  83. 83.

    Ullah, S., & “Rfid-enabled mac protocol for wban”, in,. (2013). IEEE international conference on communications (ICC). IEEE, 2013, 6030–6034.

    Google Scholar 

  84. 84.

    Zhou, J., Guo, A., Xu, J., & Su, S. (2014). An optimal fuzzy control medium access in wireless body area networks. Neurocomputing, 142, 107–114.

    Google Scholar 

  85. 85.

    Chowdhury, M. S., Khan, P., Jung, J., & Kwak, K. S. (2014). Modeling Slotted Aloha of WBAN in non-saturated conditions. KSII Transactions on Internet and Informa- tion Systems, 8(6), 1901–1913.

    Google Scholar 

  86. 86.

    Hu, L., Zhang, Y., Feng, D., Hassan, M. M., Alelaiwi, A., & Alamri, A. (2015). Design of QoS-aware multi-level MAC-layer for wireless body area network. Journal of Medical Systems.

    Article  PubMed  Google Scholar 

  87. 87.

    Moulik, S., Misra, S., & Das, D. (2017). AT-MAC: Adaptive MAC-frame payload tuning for reliable communication in wireless body area networks. IEEE Trans- actions on Mobile Computing, 16(6), 1516–1529.

    Google Scholar 

  88. 88.

    Li, N., Cai, X., Yuan, X., Zhang, Y., Zhang, B., & Li, C. (2018). EIMAC: A multi-channel MAC protocol towards energy efficiency and low interference for WBANs. IET Communications, 12(16), 1954–1962.

    Google Scholar 

  89. 89.

    Ambigavathi, M., & Sridharan, D. (2018). Low-delay channel access technique for critical data transmission in wireless body area network. Communications in Computer and Information Science, 905, 144–153.

    Google Scholar 

  90. 90.

    Masud, F., Abdullah, A. H., & Abdul-Salaam, G. (2019). Emergency traffic adaptive MAC protocol for wireless body area networks based on prioritization. PLoS ONE.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Nithya, B., Ranjan, N., & Gopinath, J. A. (2020). Perfor- mance analysis of prioritization and contention con- trol algorithm in wireless body area networks. Computer Journal, 64(2), 211–223.

    Google Scholar 

  92. 92.

    Samal, T., & Kabat, M. R. (2021). A prioritized traffic scheduling with load balancing in wireless body area networks. Journal of King Saud University Computer and Information Sciences.

    Article  Google Scholar 

  93. 93.

    Huq, M. A., Dutkiewicz, E., Fang, G., Liu, R. P., & Vesilo, R. (2012). “MEB MAC: Improved channel access scheme for medical emergency traffic in WBAN”, 2012 International Symposium on Communications and Information Technologies. ISCIT, 2012, 371–376.

    Google Scholar 

  94. 94.

    N. Bradai, L. C. Fourati, S. Boudjit, and L. Kamoun, New priority MAC protocol for wireless body area networks,” Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 1–6, 2013

  95. 95.

    J. S. Choi, J. G. Kim, S. H. City, and K. Do, “m nl ad in e e V by e th rsio is n fil O e is nly Bo ok m nl ad in e e V by e th rsio is n fil O e,” vol. 8, no. 2, 2014.

  96. 96.

    Ibarra, E., Antonopoulos, A., Kartsakli, E., & Verikoukis, C. (2015). Hehbmac: Hybrid polling mac protocol for wbans operated by human energy harvesting. Telecommunication systems, 58, 111–124.

    Google Scholar 

  97. 97.

    Shu, M., Yuan, D., Zhang, C., Wang, Y., & Chen, C. (2015). A MAC protocol for medical monitoring applications of wireless body area networks. Sensors (Switzerland), 15(6), 12906–12931.

    Google Scholar 

  98. 98.

    Yu, J., Park, L., Park, J., Cho, S., & Keum, C. (2016). CoR- MAC: Contention over reservation MAC protocol for time-critical services in wireless body area sensor networks. Sensors (Switzerland), 16(5), 656.

    Google Scholar 

  99. 99.

    M. Shakir, O. Ur Rehman, M. Rahim, N. Alrajeh, Z. A. Khan, M. A. Khan, I. A. Niaz, and N. Javaid, “Per formance optimization of priority assisted CSMA/CA mechanism of 802.15.6 under saturation regime,” Sensors (Switzerland), vol. 16, no. 9, pp. 1–24, 2016.

  100. 100.

    Lin, C. H., Lin, K. C. J., & Chen, W. T. (2017). Channel- aware polling-based MAC protocol for body area networks: design and analysis. IEEE Sensors Journal, 17(9), 2936–2948.

    Google Scholar 

  101. 101.

    Dargham, N. B., Makhoul, A., Abdo, J. B., Demerjian, J., & Guyeux, C. (2018). Efficient hybrid emergency aware MAC protocol for wireless body sensor networks. Sensors (Switzerland), 18(10), 1–18.

    Google Scholar 

  102. 102.

    Lee, J., & Kim, S. (2018). Emergency-prioritized asymmet- ric protocol for improving QoS of energy-constraint wearable device in wireless body area networks. Applied Sciences (Switzerland), 8(1), 92.

    Google Scholar 

  103. 103.

    Yang, X., Wang, L., & Zhang, Z. (2018). Wireless body area networks mac protocol for energy efficiency and extending lifetime. IEEE sensors letters, 2(1), 1–4.

    Google Scholar 

  104. 104.

    C. E. Ait Zaouiat and A. Latif, “Improvement of WBAN performances by a hybrid model: Design and evaluation of a novel inter-MAC layer exploited in medical applications,” International Journal of Internet Protocol Technology, vol. 12, no. 1, pp. 26–34, 2019.

  105. 105.

    Yuan, D., Zheng, G., Ma, H., Shang, J., & Li, J. (2019). An adaptive MAC protocol based on IEEE802.15.6 for wireless body area networks. Wireless Communications and Mobile Computing, 2019, 1–9.

    Google Scholar 

  106. 106.

    Monowar, M. M., & Alassafi, M. O. (2020). On the design of thermal-aware duty-cycle mac protocol for iot health- care. Sensors (Switzerland), 20(5), 1243.

    Google Scholar 

  107. 107.

    Olatinwo, D. D., Abu-Mahfouz, A. M., & Hancke, G. P. (2021). A hybrid multi-class MAC protocol for IoT-Enabled WBAN systems. IEEE Sensors Journal, 21(5), 6761–6774.

    Google Scholar 

  108. 108.

    Ibarra, E., Antonopoulos, A., Kartsakli, E., & Verikoukis, C. (2014). HEH-BMAC: Hybrid polling MAC protocol for WBANs operated by human energy harvesting. Telecommunication Systems, 58(2), 111–124.

    Google Scholar 

  109. 109.

    Li, J., & Serpen, G. (2011). TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set. Procedia Computer Science, 6, 408–412.

    Article  Google Scholar 

  110. 110.

    J. Zhang, W. Li, D. Cui, X. Zhao, and Z. Yin, “The ns2-based simulation and research on wireless sen- sor network route protocol,” in 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, pp. 1–4.

  111. 111.

    Ahmed Sobeih, Wei-Peng Chen, J. C. Hou, Lu-Chuan Kung, Ning Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang, “J-sim: a simulation environment for wireless sensor networks,” in 38th Annual Simulation Symposium, 2005, pp. 175–187.

  112. 112.

    C.-. Castalia-3.2 Manual.

  113. 113.

    D. Pediaditakis, Y. Tselishchev, and A. Boulis, “Per- formance and scalability evaluation of the Castalia wireless sensor network simulator,” SIMUTools 2010 - 3rd International ICST Conference on Simulation Tools and Techniques, 2010.

  114. 114.

    M. T. Bennani, A. Zbakh, M. T. Bennani, and A. Zbakh, “Leach routing protocol for image transfer using Castalia simulator To cite this version : HAL Id : hal- 02174671 Leach routing protocol for image transfer using Castalia simulator,” 2019.

  115. 115.

    R. Cavallari, S. Member, F. Martelli, R. Rosini, S. Member, C. Buratti, and R. Verdone, “A Survey on Wireless Body Area Networks: Technologies and Design Chal lenges,” vol. 16, no. 3, pp. 1635–1657, 2014.

  116. 116.

    C. Pham, “videoSense : a simulation model of image sensors under OMNET ++ / Castalia,” 2012.

  117. 117.

    O. Phy, N. L. Solutions, S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rah- man, and K. Sup, “A Comprehensive Survey of Wireless Body Area Networks,” pp. 1065–1094, 2012.

  118. 118.

    E. Ieee and U. N. Ns, “P Erformance E Valuation of B Eacon -,” vol. 3, no. 2, pp. 67–79, 2012.

  119. 119.

    H. Cuzdan, “Wireless multiple access control,” pp. 1–28.

  120. 120.

    Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate ap- plications in wireless body area networks. Wireless Networks, 21(8), 2571–2592.

    Google Scholar 

  121. 121.

    Samant, T., & Datta, A. (2016). Analysis and comparison of SMAC and TMAC protocol for energy efficient dynamic topology in sensor network. International Journal of Electrical and Computer Engineering, 6(5), 2331–2337.

    Google Scholar 

  122. 122.

    Singh, P., & Varma, S. (2014). “An improved TMAC protocol for Wireless Sensor Networks”, 2014 International Conference on Signal Propagation and Computer Technology. ICSPCT, 2014, 91–95.

    Google Scholar 

  123. 123.

    Mary, A. V., & Jerine, S. (2020). Wireless body area net- work transmissions for iot-based healthcare network: A review. IOP Conference Series: Materials Science and Engineering, 983(1), 012017.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Manjot Kaur.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Bajaj, R. & Kaur, N. A Review of MAC Layer for Wireless Body Area Network. J. Med. Biol. Eng. (2021).

Download citation


  • WBAN
  • MAC
  • Scheduling
  • MA schemes
  • IEEE 802.15.6
  • IEEE 802.15.4
  • Castalia tool
  • TMAC
  • Tunable MAC
  • ZigBee MAC
  • Base- LineMac