Skip to main content

Usefulness of Vaginal/Rectal Cylinders or Interstitial Needles for Dosimetric Verification and Uncertainty Analysis of Brachytherapy Treatment

Abstract

Purpose

The point doses for HDR treatment using vaginal/rectal cylinders or interstitial needles are verified by comparing the results for the planned dose, manual calculations using TG-43 and the actual measurements from radiochromic film. The dosimetric uncertainty associated with the calibration of the source strength, the treatment plan and the reconstructed seed-positions are analyzed.

Materials and Methods

An interstitial implant tube was placed on a 30 × 30 × 5 cm3 polystyrene phantom and above them were placed a 1 cm thick 30 × 30 cm2 bolus, then a 1 cm thick 30 × 30 cm2 RW3 plate, an EBT2 film, and one other 30 × 30 × 5 cm3 polystyrene phantom. The source seed was arranged to stop at nine positions, 0.5 cm apart. Prescribed 3 Gy was planned to be delivered to the prescription points, which were 2 cm away from the seeds. After delivery, the film dose was compared with the planned dose and a manual calculation using TG-43. Finally, the combined dosimetric uncertainty was determined by manual calculation using the uncertainty for the reconstructed seed position and the propagation uncertainty determined by TG-138/GEC-ESTRO.

Results

The results agree to within 3%. Due to the uncertainty in the seed-position reconstruction, the difference in doses is determined to be mostly around 5% from manual calculation using TG-43. All combined dosimetric uncertainties with the cover factor of two are less than 9.5%, satisfying the criteria for TG-56.

Conclusion

This method is practical for routine QA to verify the dose for a HDR treatment plan with uncertainty analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Haie-Meder, C., & Peiffert, D. (2006). Innovation in gynaecological brachytherapy: New technologies, pulse dose-rate brachytherapy, image, definition of new volumes of interest and their impact on dosimetry: Application in a clinical research programme “STIC.” Cancer Radiothérapie, 10, 402–409.

    CAS  Article  Google Scholar 

  2. 2.

    Ahamad, A., & Jhingran, A. (2004). New radiation techniques in gynecological cancer. International Journal of Gynecological Cancer, 14, 569–579.

    CAS  Article  Google Scholar 

  3. 3.

    Park, H. C., Suh, C. O., & Kim, G. E. (2002). Fractionated high-dose-rate brachytherapy in the management of uterine cervical cancer. Yonsei Medical Journal, 43, 737–748.

    Article  Google Scholar 

  4. 4.

    Chen, S. W., Liang, J. A., Yeh, L. S., Yang, S. N., Shiau, A. C., & Lin, F. J. (2004). Comparative study of reference points by dosimetric analyses for late complications after uniform external radiotherapy and high-dose-rate brachytherapy for cervical cancer. International Journal of Radiation Oncology, Biology, Physics, 60, 663–671.

    Article  Google Scholar 

  5. 5.

    Chang, J. T., See, L. C., Tang, S. G., Lee, S. P., Wang, C. C., & Hong, J. H. (1996). The role of brachytherapy in early-stage nasopharyngeal carcinoma. International Journal of Radiation Oncology, Biology, Physics, 36, 1019–1024.

    CAS  Article  Google Scholar 

  6. 6.

    Skowronek, J. (2017). Current status of brachytherapy in cancer treatment - short 20 overview. Journal of Contemp Brachytherapy, 9, 581–589.

    Article  Google Scholar 

  7. 7.

    Eifel, P. J. (1992). High-dose-rate brachytherapy for carcinoma of the cervix: high tech or high risk? International Journal of Radiation Oncology, Biology, Physics, 24, 383–386.

    CAS  Article  Google Scholar 

  8. 8.

    Eifel, P. J., Moughan, J., Owen, J., Katz, A., Mahon, I., & Hanks, G. E. (1999). Patterns of radiotherapy practice for patients with squamous carcinoma of the uterine cervix: Patterns of care study. International Journal of Radiation Oncology, Biology, Physics, 43, 351–358.

    CAS  Article  Google Scholar 

  9. 9.

    Nag, S., Orton, C., Young, D., & Erickson, B. (1999). The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States. Gynecologic Oncology, 73, 111–118.

    CAS  Article  Google Scholar 

  10. 10.

    ESTRO. (2004). A practical guide to quality control of brachytherapy equipement. European guidelines for quality assurance in radiotherapy. European Society for Therapeutic Radiology and Oncology, ESTRO Booklet No. 8.

  11. 11.

    DeWerd, L. A., Ibbott, G. S., Meigooni, A. S., Mitch, M. G., Rivard, M. J., Stump, K. E., et al. (2011). A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO. Medical Physics, 38, 782–801.

    Article  Google Scholar 

  12. 12.

    Kubo, H. D., Glasgow, G. P., Pethel, T. D., Thomadsen, B. R., & Williamson, J. F. (1998). High dose-rate brachytherapy treatment delivery: Report of the AAPM 21 Radiation Therapy Committee Task Group No. 59. Medical Physics, 25, 375–403.

    CAS  Article  Google Scholar 

  13. 13.

    Chiu-Tsao, S. T., Medich, D., & Munro, J. (2008). The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom. Medical Physics, 35, 3787–3799.

    CAS  Article  Google Scholar 

  14. 14.

    Aldelaijan, S., Mohammed, H., Tomic, N., Liang, L. H., Deblois, F., Sarfehnia, A., et al. (2011). Radiochromic film dosimetry of HDR (192)Ir source radiation fields. Medical Physics, 38, 6074–6083.

    CAS  Article  Google Scholar 

  15. 15.

    Gholami, S., Mirzaei, H. R., Arfaee, A. J., Jaberi, R., Nedaie, H. A., Mahdavi, S. R., et al. (2016). Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation. Reports of Practical Oncology & Radiotherapy, 21, 480–486.

    Article  Google Scholar 

  16. 16.

    Sarfehnia, A., Kawrakow, I., & Seuntjens, J. (2010). Direct measurement of absorbed dose to water in HDR 192Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43. Medical Physics, 37, 1924–1932.

    CAS  Article  Google Scholar 

  17. 17.

    Chang, L., Ho, S. Y., Chui, C. S., Lee, J. H., Du, Y. C., & Chen, T. (2008). A statistical approach to infer the minimum setup distance of a well chamber to the wall or to the floor for 192Ir HDR calibration. Medical Physics, 35, 2214–2217.

    CAS  Article  Google Scholar 

  18. 18.

    Arjomandy, B., Tailor, R., Anand, A., Sahoo, N., Gillin, M., Prado, K., et al. (2010). Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Medical Physics, 37(1942–1947), 22.

    Google Scholar 

  19. 19.

    Chang, L., Chui, C. S., Ding, H. J., Hwang, I. M., & Ho, S. Y. (2012). Calibration of EBT2 film by the PDD method with scanner non-uniformity correction. Physics in Medicine & Biology, 57, 5875–5887.

    CAS  Article  Google Scholar 

  20. 20.

    Nath, R., Anderson, L. L., Luxton, G., Weaver, K. A., Williamson, J. F., & Meigooni, A. S. (1995). Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Medical Physics, 22, 209–234.

    CAS  Article  Google Scholar 

  21. 21.

    Meisberger, L. L., Keller, R. J., & Shalek, R. J. (1968). The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60. Radiology, 90, 953–957.

    CAS  Article  Google Scholar 

  22. 22.

    Chang, L., Ho, S. Y., Chui, C. S., Du, Y. C., & Chen, T. (2009). Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems. Medical Physics, 36, 4115–4120.

    Article  Google Scholar 

  23. 23.

    Chang, L., Lee, T. F., Ding, H. J., & Ho, S. Y. (2013). Residual Analysis of Seed-Position Error for Orthogonal-Film Reconstruction Technique used in Brachytherapy. Journal of Medical and Biological Engineering, 33, 253–256.

    Article  Google Scholar 

  24. 24.

    Schoenfeld, A. A., Harder, D., Poppe, B., & Chofor, N. (2015). Water equivalent phantom materials for (1)(9)(2)Ir brachytherapy. Physics in Medicine & Biology, 60, 9403–9420.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan (MOST 105-2221-E-214-013 and MOST 108-2221-E-214-006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pang-Yu Chen or Hueisch-Jy Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Ho, SY., Lee, TF. et al. Usefulness of Vaginal/Rectal Cylinders or Interstitial Needles for Dosimetric Verification and Uncertainty Analysis of Brachytherapy Treatment. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00661-9

Download citation

Keywords

  • Brachytherapy
  • TG-43
  • TG-138
  • Dosimetric verification; uncertainty