Skip to main content

Development of a 2D Automated Tracking System to Characterize Golgi-Derived Membrane Tubule Fission and Fusion Dynamics

Abstract

Purpose

Intracellular organelles play an essential role in regulating the biochemistry of various processes and events in eukaryotic cells. Understanding and quantifying their morphological dynamics should allow for their deeper analysis. However, the development of organelle and membrane tracking algorithms is challenging, especially in the case of studying the regulation of Golgi-derived membrane tubules, which show varied sizes and shapes, continuous fission and fusion events, and different directions of movement. Here we have sought to establish a tracking system for tubular subcellular structures, to characterize morphological changes in membrane fission and fusion events.

Methods

The development of a tracking algorithm consists of two methods of particle linking: the k-nearest neighbor method applied to successive images with a high temporal resolution, and a modification method named fixed-lag interval smoothing Kalman filtering, for situations of temporary particle disappearance and forward and backward movement.

Results

The system shows excellent efficiency for tracking. One key advantage of this system is that it not only provides track mapping of tubules for fast and convenient interpretation, but also displays tubule labeling and the type of fission and fusion, with corresponding changes of events displayed in the track mapping view. Moreover, tracking measurements of event type and growth rate in length, motility, velocity, and diffusion features are calculated and saved offline use for further analysis.

Conclusions

This prototype tracking system can be applied to different organelles undergoing fission and fusion events, e.g. Golgi-derived tubules and mitochondria, to help biologists quantify and better understand the mechanisms underlying changes in membrane dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

C. elegans :

Caenorhabditis elegans

2D:

Two-dimensional

3D:

Three-dimensional

Fi:

Fission event

Fu:

Fusion event

FW:

Forward direction

BW:

Backward direction

BFA:

Brefeldin A

YFP:

Yellow fluorescent protein

D:

Reference direction

kNN:

k-Nearest neighbor

FLIS:

Fixed-lag interval smoothing

L:

Left-to-right direction

R:

Right-to-left direction

FIS:

Fixed interval smoothing

OR:

Orientation value

Tevent:

Total event of fission and fusion

TL:

Total length of tubules

MTL:

Mean total length of the tubules

TDT:

Total distance traveling

NDT:

Net distance traveling

MDT:

Maximum distance traveling with a specific path distance (from frame to frame) and the distance values in pixels

TrajT:

Total trajectory time

CR:

Confinement ratio

MTDS:

Mean total distance speed

MNDS:

Mean net distance speed

LFP:

Linearity of forwarding progress

MSD:

Mean square displacement

References

  1. 1.

    Qinle, B. A., & Yang, G. E. (2017). Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis. Frontiers in Biology, 12, 7–18. https://doi.org/10.1007/s11515-016-1436-9.

    CAS  Article  Google Scholar 

  2. 2.

    Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113. https://doi.org/10.1038/nrg1272.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Peng, J.-Y., Lin, C.-C., Chen, Y.-J., Kao, L.-S., Liu, Y.-C., Chou, C.-C., et al. (2011). Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Computational Biology, 7(10), e1002212. https://doi.org/10.1371/journal.pcbi.1002212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Reitere, V., Baschieri, F., Millarte, V., & Farhan, H. (2013). Methods to study signaling at the Golgi apparatus. Methods in Cell Biology, 118, 345–358. https://doi.org/10.1016/b978-0-12-417164-0.00021-5.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Wait, E., Winter, M., Bjornsson, C., Kokovay, E., Wang, Y., Goderie, S., et al. (2014). Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences. BMC Bioinformatics, 15(1), 328. https://doi.org/10.1186/1471-2105-15-328.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Saban, M., Altinok, A., Peck, A., Kenney, C., Feinstein, S., Wilson, L., Rose, K., & Manjunath, B. S. (2006). Automated tracking and modeling of microtubule dynamics. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1032–1035. https://doi.org/10.1109/ISBI.2006.1625097.

  7. 7.

    Rafelski, S. M., Viana, M. P., Zhang, Y., Chan, Y.-H.M., Thorn, K. S., Yam, P., et al. (2012). Mitochondrial network size scaling in budding yeast. Science, 338(6108), 822–824. https://doi.org/10.1126/science.1225720.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bottanelli, F., Kilian, N., Ernst, A. M., Rivera-Molina, F., Schroeder, L. K., Kromann, E. B., et al. (2017). A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Molecular Biology of the Cell, 28(12), 1676–1687. https://doi.org/10.1091/mbc.e16-12-0863.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wang, S., Fu, C. L., Zhang, Y., Chen, Q., & Long, M. (2010). Dynamics of morphological changes for mitochondrial fission and fusion. Science China Physics Mechanics and Astronomy, 53(4), 680–689. https://doi.org/10.1007/s11433-010-0163-5.

    CAS  Article  Google Scholar 

  10. 10.

    Westrate, L. M., Drocco, J. A., Martin, K. R., Hlavacek, W. S., & MacKeigan, J. P. (2014). Mitochondrial morphological features are associated with fission and fusion events. PLoS ONE, 9(4), e95265. https://doi.org/10.1371/journal.pone.0095265.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yang, J.-S., Valente, C., Polishchuk, R. S., Turacchio, G., Layre, E., Moody, D. B., et al. (2011). COPI acts in both vesicular and tubular transport. Nature Cell Biology, 13(8), 996–1003. https://doi.org/10.1038/ncb2273.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kervrann, C., Sorzano, C. Ó. S., Acton, S. T., Olivo-Marin, J., & Unser, M. (2016). A guided tour of selected image processing and analysis methods for fluorescence and electron microscopy. IEEE Journal of Selected Topics in Signal Processing, 10(1), 6–30. https://doi.org/10.1109/JSTSP.2015.2505402.

    Article  Google Scholar 

  13. 13.

    Chenouard, N., Smal, I., Chaumont, F., Mašika, M., Sbalzarini, I. F., Gong, Y., et al. (2014). Objective comparison of particle tracking methods. Nature Methods, 11(3), 281–289. https://doi.org/10.1038/nmeth.2808.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang, S., Xiao, W., Shan, S., Jiang, C., Chen, M., Zhang, Y., et al. (2012). Multi-patterned dynamics of mitochondrial fission and fusion in a living cell. PLoS ONE, 7(5), e9879. https://doi.org/10.1371/journal.pone.0019879.

    CAS  Article  Google Scholar 

  15. 15.

    Winter, M., Wait, E., Roysam, B., Goderie, S., Ahmed, R., Ali, R. A. N., et al. (2011). Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nature Protocols, 6(12), 1942–1952. https://doi.org/10.1038/nprot.2011.422.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Winter, M. R., Fang, C., Banker, G., Roysam, B., & Cohen, A. R. (2012). Axonal transport analysis using multitemporal association tracking. International Journal of Computational Biology and Drug Design, 5(1), 35–48. https://doi.org/10.1504/IJCBDD.2012.045950.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Winter, M. R., Liu, M., Monteleone, D., Melunis, J., Hershberg, U., Goderie, S. K., et al. (2015). Computational image analysis reveals intrinsic multigenerational differences between anterior and posterior cerebral cortex neural progenitor cells. Stem Cell Reports, 5(4), 609–20. https://doi.org/10.1016/j.stemcr.2015.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Applegate, K. T., Besson, S., Matov, A., Bagonis, M. H., Jaqaman, K., & Danuser, G. (2011). plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics. Journal of Structural Biology, 176(2), 168–184. https://doi.org/10.1016/j.jsb.2011.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Sbalzarini, I. F., & Koumoutsakos, P. (2005). Feature point tracking and trajectory analysis for video imaging in cell biology. Journal of Structural Biology, 151(2), 182–195. https://doi.org/10.1016/j.jsb.2005.06.002.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Godineza, W. J., Lampeb, M., Wörza, S., Müller, B., Eils, R., & Rohr, K. (2009). Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Medical Image Analysis, 13(2), 325–342. https://doi.org/10.1016/j.media.2008.12.004.

    Article  Google Scholar 

  21. 21.

    Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E., et al. (2017). TrackMate: An open and extensible platform for single-particle tracking. Methods, 115, 80–90. https://doi.org/10.1016/j.ymeth.2016.09.016.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Nussbaum-Krammer, C. I., Neto, M. F., Brielmann, R. M., Pedersen, J. S., & Morimoto, R. I. (2015). Investigating the spreading and toxicity of Prion-like proteins using the metazoan model organism. Journal of Visualized Experiments, 95, 52321. https://doi.org/10.3791/52321.

    CAS  Article  Google Scholar 

  23. 23.

    Ku, T.-C., Huang, Y.-N., Huang, C.-C., Yang, D.-M., Kao, L.-S., Chiu, T.-Y., et al. (2007). An automated tracking system to measure the dynamic properties of vesicles in living cells. Microscopy Research and Technique, 70(2), 119–134. https://doi.org/10.1002/jemt.20392.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ku, T.-C., Kao, L.-S., Lin, C.-C., & Tsai, Y.-S. (2009). Morphological filter improve the efficiency of automated tracking of secretory vesicles with various dynamic properties. Microscopy Research and Technique, 72(9), 639–649. https://doi.org/10.1002/jemt.20711.

    Article  PubMed  Google Scholar 

  25. 25.

    Cordelieres, F. ImageJ plugin: ManualTracking. https://imagej.nih.gov/ij/plugins/track/track.html

  26. 26.

    Meijering, E., Dzyubachyk, O., & Smal, I. (2012). Methods for cell and particle tracking. Methods in Enzymology, 504, 183–200. https://doi.org/10.1016/B978-0-12-391857-4.00009-4.

    Article  PubMed  Google Scholar 

  27. 27.

    Stuurman, N. ImageJ plugin: MTrack2. https://valelab4.ucsf.edu/~nstuurman/IJplugins/MTrack2.html

  28. 28.

    Kuhn., J. ImageJ plugin: MultiTracker. https://imagej.nih.gov/ij/plugins/multitracker.html

  29. 29.

    Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G. (2008). Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods, 5(8), 695–702. https://doi.org/10.1038/nmeth.1237.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Celler, K., Wezel, G. P., & Willemse, J. (2013). Single particle tracking of dynamically localizing TatA complexes in Streptomyces coelicolor. Biochemical and Biophysical Research Communications, 438(1), 38–42. https://doi.org/10.1016/j.bbrc.2013.07.016.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Yaothak, J., Simpson, J. C., Heffernan, L. F., Tsai, Y. S., & Lin, C. C. (2020). A semi-automated 2D segmentation and classification system to quantify and characterize morphological features of Golgi-derived membrane structures. American Journal of Biomedical Engineering, 10(2), 29–43.

    Google Scholar 

  32. 32.

    Heffernan, L. F., & Simpson, J. C. (2014). The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochemical Society Transactions, 42(5), 1453–1459. https://doi.org/10.1042/BST20140178.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lantuejoul, C., & Beucher, S. (1981). On the use of the geodesic metric in image analysis. Journal of Microscopy, 121(1), 39–49. https://doi.org/10.1111/j.1365-2818.1981.tb01197.x.

    Article  Google Scholar 

  34. 34.

    Chenouard, N., Bloch, I., & Olivo-Marin, J. C. (2013). Multiple hypothesis tracking for cluttered biological image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2736–3750. https://doi.org/10.1109/TPAMI.2013.97.

    Article  PubMed  Google Scholar 

  35. 35.

    Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552.

    Article  Google Scholar 

  36. 36.

    Sethi, J. K., & Jain, R. (1987). Finding trajectories of feature points in a monocular image sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(1), 56–73. https://doi.org/10.1109/TPAMI.1987.4767872.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Rangarajan, K., & Shah, M. (1991). Establishing motion correspondence. CVGIP: Image Understanding, 54(1), 56–73. https://doi.org/10.1016/1049-9660(91)90075-Z.

    Article  Google Scholar 

  38. 38.

    Vallotton, P., Ponti, A., Waterman-Storer, C. M., Salmon, E. D., & Danuser, G. (2003). Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: A fluorescent speckle microscopy study. Biophysical Journal, 85(2), 1289–1306. https://doi.org/10.1016/S0006-3495(03)74564-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sage, A. P., & Melsa, J. L. (1971). Estimation theory with applications to communications and control. New York: McGraw-Hill.

    Book  Google Scholar 

  40. 40.

    Crassidis, J. L., & Junkins, J. L. (2004). Optimal estimation of dynamic systems (p. 2004). New York: CRC. Press.

    Book  Google Scholar 

  41. 41.

    Gelb, A. (1974). Applied optimal estimation. Cambridge: The MIT Press.

    Google Scholar 

  42. 42.

    Wang, R., Perez-Riverol, Y., Hermjakob, H., & Vizcaíno, J. A. (2015). Open source libraries and frameworks for biological data visualisation: A guide for developers. Proteomics, 158, 1356–1374. https://doi.org/10.1002/pmic.201400377.

    CAS  Article  Google Scholar 

  43. 43.

    Talevich, E., Invergo, B. M., Cock, P. J. A., & Chapman, B. A. (2012). Bio.Phylo: A unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics, 13, 209. https://doi.org/10.1186/1471-2105-13-209.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Koskinen, V. R., Emery, P. A., Creasy, D. M., & Cottrell, J. S.Hierarchical clustering of shotgun proteomics data. Molecular Cellular Proteomics, 10(6), M110.003822. https://doi.org/10.1074/mcp.M110.003822.

  45. 45.

    Tu, Y., & Shen, H.-W. (2007). Visualizing changes of hierarchical data using treemaps. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1286–1293. https://doi.org/10.1109/TVCG.2007.70529.

    Article  PubMed  Google Scholar 

  46. 46.

    Shneiderman, B., & Wattenberg, M. (2001). Ordered treemap layouts. IEEE Symposium on Information Visualization, 2001. INFOVIS, 2001, 73–78. https://doi.org/10.1109/INFVIS.2001.963283.

Download references

Acknowledgements

No acknowledgements

Funding

This work is partially supported by the Ministry of Science and Technology, Taiwan, R.O.C under Grant no. MOST 107-2221-E-033-023-MY2. LFH was supported by a postgraduate fellowship from the Irish Research Council (IRC).

Author information

Affiliations

Authors

Contributions

JCS and LFH collected the image data. Conceptualization and study design was performed by JY, YST, and CCL, methodology by JY and YST, implementation by JY, and validation by all authors. All authors interpreted the results data. JY, JCS, and YST wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuh-Show Tsai or Chung-Chih Lin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaothak, J., Simpson, J.C., Heffernan, L.F. et al. Development of a 2D Automated Tracking System to Characterize Golgi-Derived Membrane Tubule Fission and Fusion Dynamics. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00660-w

Download citation

Keywords

  • Tracking system
  • Fission
  • Fusion
  • Fixed-lag interval smoothing
  • Kalman filter
  • Track mapping