Skip to main content

Evaluation of the Significance of MRI in the Prenatal Diagnosis of Neural Tube Defects

Abstract

Purpose

Congenital anomalies, also known as birth defects have been the primary focus of a number of studies globally. Our primary objective is to evaluate the significance of MRI in the prenatal diagnosis of congenital central nervous system (CNS) anomalies and explore the role of autopsy techniques in the postnatal phase as a verification tool. Additionally, we are focused on proving the MRI-specific diagnostic capabilities in comparison to the current gold standard based on autopsy.

Methods

The study is based on a thorough analysis of incidences of congenital CNS anomalies in four women and their foetuses. Primary in-vivo MRI diagnostics and subsequent verification via autopsy (postmortem) have been performed.

Results

We described the foetal CNS anomalies based on MRI diagnostics and additionally verified the results by autopsy to confirm the findings and improve the services offered to patients and their families.

Conclusion

The findings of the study confirmed the role of the MRI as a reliable tool for unequivocal diagnosis of congenital CNS anomalies and malformations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Data related to this study is available upon request.

References

  1. 1.

    https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies. Accessed February 27, 2021.

  2. 2.

    Hadzagić-Catibusić, F., Maksić, H., Uzicanin, S., Heljić, S., Zubcević, S., Merhemić, Z., Cengić, A., & Kulenović, E. (2008). Congenital malformations of the central nervous system: Clinical approach. Bosnian Journal of Basic Medical Sciences, 8(4), 356–360. https://doi.org/10.17305/bjbms.2008.2897

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Association of Health Care Professionals. (2009). Understanding congenital malformations and anomalies—Occasional Paper 467 (pp. 4–6). IAHCP Publications.

    Google Scholar 

  4. 4.

    Kinsma, S. L., & Johnson, M. V., et al. (2007). Congenital anomalies of the central nervous system. In M. Kleigman (Ed.), Nelson textbook of paediatrics (18th ed., pp. 2443–2448). Saunders.

    Google Scholar 

  5. 5.

    Sutton, L. N. (2008). Fetal surgery for neural tube defects. Best Practice & Research. Clinical Obstetrics & Gynaecology, 22(1), 175–188. https://doi.org/10.1016/j.bpobgyn.2007.07.004

    Article  Google Scholar 

  6. 6.

    Coakley, F. V., Glenn, O. A., Qayyum, A., Barkovich, A. J., Goldstein, R., & Filly, R. A. (2004). Fetal MRI: A developing technique for the developing patient. AJR. American Journal of Roentgenology, 182, 243–252. https://doi.org/10.2214/ajr.182.1.1820243

    Article  PubMed  Google Scholar 

  7. 7.

    Levine, D., Barnes, P. D., Madsen, J. R., Li, W., & Edelman, R. R. (1997). Fetal central nervous system anomalies: MR imaging augments sonographic diagnosis. Radiology, 204, 635–642. https://doi.org/10.1148/radiology.204.3.9280237

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Simon, E. M., Goldstein, R. B., Coakley, F. V., Filly, R. A., Broderick, K. C., Musci, T. J., & Barkovich, A. J. (2000). Fast MR imaging of fetal CNS anomalies in utero. AJNR American Journal of Neuroradiology, 21, 688–1698.

    Google Scholar 

  9. 9.

    Manganaro, L., Bernardo, S., Antonelli, A., Vinci, V., Saldari, M., & Catalano, C. (2017). Fetal MRI of the central nervous system: State-of-the-art. European Journal of Radiology, 93, 273–283. https://doi.org/10.1016/j.ejrad.2017.06.004

    Article  PubMed  Google Scholar 

  10. 10.

    Guardiola, A., Koltermann, V., Aguiar, P. M., Grossi, S. P., Fleck, V., Pereira, E. C., & Pellanda, L. (2009). Neurological congenital malformations in a tertiary hospital in south Brazil. Arquivos de Neuro-Psiquiatria, 67(3B), 807–811. https://doi.org/10.1590/s0004-282x2009000500005

    Article  PubMed  Google Scholar 

  11. 11.

    Siddesh, A., Gupta, G., Sharan, R., Agarwal, M., & Phadke, S. R. (2017). Spectrum of prenatally detected central nervous system malformations: Neural tube defects continue to be the leading foetal malformation. The Indian Journal of Medical Research, 145(4), 471–478. https://doi.org/10.4103/ijmr.IJMR_1882_14

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pitkin, R. M. (2007). Folate and neural tube defects. American Journal of Clinical Nutrition, 85, 285–288. https://doi.org/10.1093/ajcn/85.1.285s

    Article  Google Scholar 

  13. 13.

    Copp, A. J., Stanier, P., & Greene, N. D. (2013). Neural tube defects: Recent advances, unsolved questions, and controversies. The Lancet Neurology, 12(8), 799–810. https://doi.org/10.1016/S1474-4422(13)70110-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    (2017). Practice Bulletin No. 187 Summary: Neural tube defects. Obstetrics & Gynecology, 130(6), 1394–1396. https://doi.org/10.1097/AOG.0000000000002410

  15. 15.

    Centers for Disease Control and Prevention (CDC). (2005). Use of dietary supplements containing folic acid among women of childbearing age-United States, 2005. MMWR Morbidity and Mortality Weekly Report, 54(38), 955–958.

  16. 16.

    Zurmohle, U. M., Homann, T., Schroeter, C., Rothgerber, H., Hommel, G., & Ermert, J. A. (1998). Psychosocial adjustment of children with spina bifida. Journal of Child Neurology, 13, 64–70. https://doi.org/10.1177/088307389801300204

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Kaufman, B. A. (2004). Neural tube defects. Pediatric Clinics of North America, 51, 389–419. https://doi.org/10.1016/s0031-3955(03)00207-4

    Article  PubMed  Google Scholar 

  18. 18.

    Saleem, S. N., Said, A. H., Abdel-Raouf, M., El-Kattan E. A., Zaki M. S., Madkour, N., & Shokry, M. (2009). Fetal MRI in the evaluation of foetuses referred for sonographically suspected neural tube defects (NTDs): Impact on diagnosis and management decision. Neuroradiology, 51, 761–772. https://doi.org/10.1007/s00234-009-0549-0

    Article  PubMed  Google Scholar 

  19. 19.

    Griffiths, P. D., Widjaja, E., Paley, M. N. J., & Whitby, E. H. (2006). Imaging the fetal spine using in utero MR: Diagnostic accuracy and impact in management. Pediatric Radiology, 36, 927–933. https://doi.org/10.1007/s00247-006-0234-y

    Article  PubMed  Google Scholar 

  20. 20.

    Sebold, C. D., Melvin, E. C., Siegel, D., Mehltretter, L., Enterline, D. S., Nye, J. S., Kessler, J., Bassuk, A., Speer, M. C., & George, T. M. (2005). Recurrence risks for neural tube defects in siblings of patients with lipomyelomeningocele. Genetics in Medicine, 7, 64–67. https://doi.org/10.1097/01.gim.0000151158.09278.2b

    Article  PubMed  Google Scholar 

  21. 21.

    Kitova, T., Kilova, K., Kitov, B., Masmoudi, A., Milkov, D., & Gaigi, S. (2014). A foetus with Meckel Gruber syndrome associated with isomerism. Central European Journal of Medicine, 9(3), 481–484. https://doi.org/10.2478/s11536-013-0304-0

    Article  Google Scholar 

  22. 22.

    Kheir, A. E., Imam, A., Omer, I. M., Hassan, I. M., Elamin, S. A., Awadalla, E. A., Gadalla, M. H., & Hamdoon, T. A. (2012). Meckel-Gruber syndrome: A rare and lethal anomaly. Sudanese Journal of Paediatrics, 12(1), 93–96.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kitova, T. T., Karaslavova, E. G., Masmoudi, A., & Gaigi, S. S. (2013). Maternal factors and associated anomalies in NTD foetuses from Tunisia. Central European Journal of Medicine Open Medicine (Poland), 8(6), 707–712. https://doi.org/10.2478/s11536-013-0238-6

    Article  Google Scholar 

  24. 24.

    Vieira, A. R., & Castillo, T. S. (2005). Maternal age and neural tube defects: Evidence for a greater effect in spina bifida than in anencephaly. Revista Medica de Chile, 133, 62–70. https://doi.org/10.4067/s0034-98872005000100008

    Article  PubMed  Google Scholar 

  25. 25.

    Kitova, T. T., Karaslavova, E., & Gaigi, S. S. (2013). Gender and associated skeletal abnormalities in fetuses with neural tube defects. Fetal and Pediatric Pathology, 32(5), 326–336. https://doi.org/10.3109/15513815.2013.768735

    Article  PubMed  Google Scholar 

  26. 26.

    Maurice, P., Garel, J., Garel, C., Dhombres, F., Friszer, S., Guilband, L., Maisonneuve, E., Ducou Le Point, H., Blodiaux, E., & Jouannic, J. M. (2021). New insights in cerebral findings associated with fetal myelomeningocele: A retrospective cohort study in a single tertiary centre. BJOG, 128(2), 376–383. https://doi.org/10.1111/1471-0528.16185

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Simon E. M., Goldstein R. B., Coakley F. V., Filly R. A., Broderick K. C., Musci T. J., & Barkovich A. J. (2000). Fast MR imaging of fetal CNS anomalies in utero. AJNR. American Journal of Neuroradiology, 21, 1688–1698.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Nyberg, D. A., McGahan, J. P., Pretorius, D. H., & Pilu, G. (2003). Diagnostic imaging of fetal anomalies. Lippincott Williams & Wilkins. https://doi.org/10.7863/jum.2003.22.8.850

    Book  Google Scholar 

  29. 29.

    Kitova, T., Milkov, D., Kitov, B., Kilova, K., & Gaigi, S. (2013). Demographic factor and associated anomalies in foetuses with neural tube defects (NTDs). Pteridines, 24(3–4), 257–263. https://doi.org/10.1515/pterid-2013-0028

    Article  CAS  Google Scholar 

  30. 30.

    Perveen, F., & Tyyab, S. (2007). Frequency and pattern of distribution of congenital anomalies in the newborn and associated maternal risk factors. Journal of the College of Physicians and Surgeons–Pakistan, 17(6), 340–343.

    PubMed  Google Scholar 

  31. 31.

    Shurtleff, D. B. (2004). Epidemiology of neural tube defects and folic acid. Cerebrospinal Fluid Research, 1(1), 5. https://doi.org/10.1186/1743-8454-1-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Shelmerdine, S. C., Sebire, N. J., & Arthurs, O. J. (2019). Perinatal post-mortem ultrasound (PMUS): Radiological-pathological correlation. Insights Into Imaging, 10(1), 81. https://doi.org/10.1186/s13244-019-0762-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cortazar, A. Z., Martinez, A. M., Feliubadalo, C. D., Cueto, M. R. B., & Serra, L. (2013). Magnetic resonance imaging in the prenatal diagnosis of neural tube defects. Insights Imaging, 4(2), 225–237. https://doi.org/10.1007/s13244-013-0223-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Cassidy, A., Herrick, C., Norton, M. E., Ursell, P. C., Vargas, J., & Kerns, J. L. (2019). How does fetal autopsy after pregnancy loss or termination for anomalies and other complications change recurrence risk? American Journal of Perinatology Reports, 9(1), e30–e35. https://doi.org/10.1055/s-0039-1681013

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hellkvist, A., Wikström, J., & Mulic-Lutvica, A. (2019). Postmortem magnetic resonance imaging vs autopsy of second trimester foetuses terminated due to anomalies. Acta Obstetricia et Gynecologica Scandinavica, 98, 865–876. https://doi.org/10.1111/aogs.13548

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Goergen, S. K., Alibrahim, E., Govender, N., Stanislavsky, A., Abel, C., Prystupa, S., Collett, J., Shelmerdine, S. C., & Arthurs, O. J. (2019). Diagnostic assessment of foetal brain malformations with intra-uterine MRI versus perinatal post-mortem MRI. Neuroradiology, 61, 921–934. https://doi.org/10.1007/s00234-019-02218-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    D’Hondt, A., Cassart, M., De Maubeuge, R., Ares, G. S., Rommens, J., & Avni, E. F. (2018). Postmortem fetal magnetic resonance imaging: Where do we stand? Insights Into Imaging, 9, 591–598. https://doi.org/10.1007/s13244-018-0627-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Shruthi, M., Gupta, N., Jana, M., Mridha, A. R., Kumar, A., Agarwal, R., Sharma, R., Deka, D., Gupta, A. K., & Kabra, M. (2018). Conventional vs virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and fetal malformations. Ultrasound in Obstetrics and Gynecology, 51, 236–245. https://doi.org/10.1002/uog.17468

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The research was supported by an internal project of the Medical University of Plovdiv, Bulgaria.

Author information

Affiliations

Authors

Contributions

All authors have equally contributed to the study.

Corresponding author

Correspondence to M. Stoeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The study was approved by the local Research Ethics Committee at the Medical University of Plovdiv.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The participants have consented to the publication of the study results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kingsley-Godwin, M.J., Tenev, A., Uchikova, E. et al. Evaluation of the Significance of MRI in the Prenatal Diagnosis of Neural Tube Defects. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00657-5

Download citation

Keywords

  • Congenital malformations/anomalies
  • Neurological malformations
  • MRI
  • Autopsy
  • Birth defects
  • CNS

JEL Classification

  • I10