A Mathematical Model for Biomechanical Evaluation of Micro-motion in Dental Prosthetics using Vibroacoustic RFA



Dental implants are placed in the jaw of a patient to perform the function of a missing tooth. However, before the implant is subjected to masticatory loading, sufficient osseointegration should take place to prevent its failure. Resonance Frequency Analysis is one of the methods to measure the primary stability of an implant system in terms of micromotion. This paper aims to formulate a mathematical model of the dental prosthetic for the vibroacoustic RFA technique.


Vibroacoustic RFA is a novel method that excites the implant using either a loudspeaker or a buzzer and captures the subsequent displacement. In this study, a single degree of freedom mathematical model is excited using a sinusoidal force. The subsequent displacement or micro-motion of the implant system is found out by basic equations of vibrations while varying the input frequency between 1 – 50 Hz.


The resonant frequency corresponding to the maximum micro-motion which lies between 1.2 – 2 µm is plotted using MATLAB. The resonant frequency values lie between 8975 – 8995 Hz with an average value of 8985 Hz. When the input frequency increases beyond 40 Hz, the micromotion shows a percentage increase of 40.62%.


A higher value of resonance frequency indicates better osseointegration with decrease in micromotion. A Mathematical model and subsequent signal analysis using RFA is advantageous for implant stability measurement. Further research is needed to develop multiple degree of freedom systems to simulate the dental implant model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ghosal, S., Goswami, B., Ghosh, R., & Banerjee, P. (2011). Determination of stability of dental implant from impedance studies using resonance frequency analysis. Second International Conference on Emerging Applications of Information Technology. https://doi.org/10.1109/EAIT.2011.58

    Article  Google Scholar 

  2. 2.

    Ghorbel, H., Guidara, A., Guidara, R., Trigui, M., Bouaziz, J., Keskes, H., & Coddet, C. (2020). Assessment of the addition of fluorapatite-alumina coating for a durable adhesion of the interface prosthesis/bone cells: implementation In Vivo. Journal of Medical and Biological Engineering, 40(2), 158–168. https://doi.org/10.1007/s40846-019-00498-3

    Article  Google Scholar 

  3. 3.

    Boemio, G., Rizzo, P., & Nardo, L. D. (2011). Assessment of dental implant stability by means of the electromechanical impedance method. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/20/4/045008

    Article  Google Scholar 

  4. 4.

    Meredith, N. (1998). Assessment of implant stability as a prognostic determinant. The International Journal of Prosthodontics, 11(5), 491–502. PMID: 9922740.

    CAS  PubMed  Google Scholar 

  5. 5.

    Sennerby, L., & Meredith, N. (2008). Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology, 47(1), 51–66. https://doi.org/10.1111/j.1600-0757.2008.00267.x.

    Article  Google Scholar 

  6. 6.

    Gosavi, P. S., Dhatrak, P. P. N., & Narkar, P. K. M. (2015). Optimisation of Dental Implant. International Engineering Research Journal, 2, 4319–4323. www.ierjournal.org.

  7. 7.

    O’Sullivan, D., Sennerby, L., & Meredith, N. (2000). Measurements comparing the initial stability of five designs of dental implants: A human cadaver study. Clinical Implant Dentistry and Related Research, 2(2), 85–92. https://doi.org/10.1111/j.1708-8208.2000.tb00110.x

    Article  PubMed  Google Scholar 

  8. 8.

    Harirforoush, R. (2012). Dental Implant Stability Analysis by using Resonance Frequency Method. Master’s Thesis, Simon Fraser University, p. 101. http://summit.sfu.ca/item/13653.

  9. 9.

    Khouja, N. (2017). In Search of An Improved Methodology for Measuring Dental Implant Stability: Combining Experimental Model Analysis (EMA) and Finite Element Analysis (FEA) to Achieve Maximum Reliability. Doctoral Thesis, University of Washington, p. 295. https://digital.lib.washington.edu/researchworks/handle/1773/40021.

  10. 10.

    Herrero Climent, M., Santos García, R., Jaramillo Santos, R., Romero Ruiz, M. M., Fernández Palacin, A., Lázaro Calvo, P., et al. (2013). Assessment of Osstell ISQ’s reliability for implant stability measurement: A cross-sectional clinical study. Medicina Oral, Patologia Oral y Cirugia Bucal. https://doi.org/10.4317/medoral.19120.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ito, Y., Sato, D., Yoneda, S., Ito, D., Kondo, H., & Kasugai, S. (2008). Relevance of resonance frequency analysis to evaluate dental implant stability: Simulation and histomorphometrical animal experiments. Clinical Oral Implants Research, 19(1), 9–14. https://doi.org/10.1111/j.1600-0501.2007.01419.x

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Meredith, N., Alleyne, D., & Cawley, P. (1996). Quantitative determination of the stability of implant-bone interface using resonance frequency analysis. In Clinical oral Implants Research, pp. 103–111. https://doi.org/10.1115/IMECE2002-33490.

  13. 13.

    Dhatrak, P., Shirsat, U., & Deshmukh, V. (2015). Fatigue life prediction of commercial dental implants based on biomechanical parameters: A review. Journal of Materials Science & Surface Engineering, 3(2), 221–222.

    CAS  Google Scholar 

  14. 14.

    Pan, M., Wang, S., & Chen, C. (2021). Handheld device for assessing dental implant osseointegration through the vibro-acoustic technique. Measurement, 169. https://doi.org/10.1016/j.measurement.2020.108419.

  15. 15.

    Zhuang, H. B., Pan, M. C., Chen, J. Z., Wu, J. W., & Chen, C. S. (2014). A noncontact detection technique for interfacial bone defects and osseointegration assessment surrounding dental implants. Measurement, 55, 335–342. https://doi.org/10.1016/j.measurement.2014.05.039.

    Article  Google Scholar 

  16. 16.

    Charatchaiwanna, A., Rojsiraphisa, T., Aummeungtong, W., Reichart, P. A., & Khongkhunthian, P. (2019). Mathematical equations for dental implant stability patterns during the osseointegration period, based on previous resonance frequency analysis studies. Clinical Implant Dentistry and Related Research. https://doi.org/10.1111/cid.12828.

    Article  PubMed  Google Scholar 

  17. 17.

    Argatov, I., & Iantchenko, A. (2019). A simple mathematical model for the resonance frequency analysis of dental implant stability: Implant clamping quotient. Mechanics Research Communications, 95, 67–70. https://doi.org/10.1016/j.mechrescom.2018.12.004

    Article  Google Scholar 

  18. 18.

    Zanetti, E. M., Pascoletti, G., Calì, M., Bignardi, C., Franceschini, G., Ingegneria, D., & Perugia, U. (2018). Clinical Assessment of Dental Implant Stability During Follow-Up: What Is Actually Measured and Perspectives. Biosensors. https://doi.org/10.3390/bios8030068

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lee, S., Huang, H., Lin, C., & Shih, Y. (2000). In-vivo and in-vitro natural frequency analysis of periodontal conditions: An innovative method. Journal Periodontal, 71(4), 632–640. https://doi.org/10.1902/jop.2000.71.4.632

    CAS  Article  Google Scholar 

  20. 20.

    Westover, L., Faulkner, G., Hodgetts, W., & Raboud, D. (2018). Application of the advanced system for implant stability testing (ASIST) to natural teeth for noninvasive evaluation of the tooth root interface. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2018.01.023

    Article  PubMed  Google Scholar 

  21. 21.

    Schmitz, T. L., & Smith, K. S. (2021). Two Degree of Freedom Forced Vibration. Mechanical Vibrations, 1, 173–204. https://doi.org/10.1007/978-3-030-52344-2_5

    Article  Google Scholar 

  22. 22.

    Dresig, H., & Holzweiβig, F. (1967). Dynamics of Machinery. In Springer (Vol. 6, Issue 11), ISBN 978-3-540-89939-6, e-ISBN 978-3-540-89940-2. https://doi.org/10.1007/978-3-540-89940-2

  23. 23.

    Faulkner, M. G., Giannitsios, D., & Lipsett, A. W. (2001). The Use and Abuse of the Periotest for 2-Piece Implant / Abutment Systems. The International Journal of Oral & Maxillofacial Implants, 16(4).

  24. 24.

    Gao, X., Fraulob, M., & Haïat, G. (2019). Biomechanical behaviours of the bone–implant interface: A review. Journal of the Royal Society, Interface, 16, 20190259. https://doi.org/10.1098/rsif.2019.0259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Özkal, F. M., Cakir, F., & Sensoz, E. (2020). Schematization of cannulated screw fixations in femoral neck fractures using genetic algorithm and finite element method. Journal of Medical and Biological Engineering, 40(5), 673–687. https://doi.org/10.1007/s40846-020-00528-5

    Article  Google Scholar 

  26. 26.

    Raffa, M. L., Nguyen, V. H., & Haiat, G. (2019). Micromechanical modeling of the contact stiffness of an osseointegrated bone – implant interface. BioMedical Engineering OnLine. https://doi.org/10.1186/s12938-019-0733-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kayacan, R., Ballarini, R., & Mullen, R. L. (1997). Theoretical study of the effects of tooth and implant mobility differences on occlusal force transmission in tooth/implant-supported partial prostheses. The Journal of Prosthetic Dentistry., 78, 391–399.

    CAS  Article  Google Scholar 

  28. 28.

    Westover, L., Faulkner, G., Hodgetts, W., & Raboud, D. (2016). Advanced system for implant stability testing (ASIST). Journal of Biomechanics, 49(15), 3651–3659. https://doi.org/10.1016/j.jbiomech.2016.09.043

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Dhatrak, P., Girme, V., Shirsat, U., Sumanth, S., & Deshmukh, V. (2019). Significance of orthotropic material models to predict stress around bone-implant interface using numerical simulation. BioNanoScience, 9(3), 652–659. https://doi.org/10.1007/s12668-019-00649-5

    Article  Google Scholar 

  30. 30.

    Jokar, H., Rouhi, G., & Abolfathi, N. (2020). The effects of splinting on the initial stability and displacement pattern of periodontio-integrated dental implants: A finite element investigation. Journal of Medical and Biological Engineering, 40(5), 719–726. https://doi.org/10.1007/s40846-020-00544-5

    Article  Google Scholar 

  31. 31.

    Thienkarochanakul, K., Javadi, A. A., Akrami, M., Charnley, J. R., & Benattayallah, A. (2020). Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis. Journal of Medical and Biological Engineering, 40(3), 409–418. https://doi.org/10.1007/s40846-020-00523-w

    Article  Google Scholar 

  32. 32.

    Rittel, D., Dorogoy, A., Haïat, G., & Shemtov-Yona, K. (2019). Resonant frequency analysis of dental implants. Medical Engineering and Physics, 66, 65–74. https://doi.org/10.1016/j.medengphy.2019.02.008

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Dhatrak, P., Shirsat, U., Sumanth, S., & Deshmukh, V. (2018). Finite element analysis and experimental investigations on stress distribution of dental implants around implant-bone interface. Materials Today: Proceedings, 5(2), 5641–5648. https://doi.org/10.1016/j.matpr.2017.12.157

    CAS  Article  Google Scholar 

  34. 34.

    Ho, K. N., Lee, S. Y., & Huang, H. M. (2017). Damping ratio analysis of tooth stability under various simulated degrees of vertical alveolar bone loss and different root types. BioMedical Engineering OnLine. https://doi.org/10.1186/s12938-017-0388-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Huang, H., Cheng, K., Chen, C., Ou, K., Lin, C., & Lee, S. (2018). Design of a stability-detecting device for dental implants. Journal of Engineering in Medicine, May. https://doi.org/10.1243/095441105X9336

    Article  Google Scholar 

  36. 36.

    Castellana, A., Carullo, A., Astolfi, A., Puglisi, G. E., & Fugiglando, U. (2017). Intra-speaker and inter-speaker variability in speech sound pressure level across repeated readings. The Journal of the Acoustic Society of America. https://doi.org/10.1121/1.4979115

    Article  Google Scholar 

  37. 37.

    Darendeliler, M. A., Zea, A., Shen, G., & Zoellner, H. (2007). Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: A preliminary study. Australian Dental Journal, 4, 282–287. https://doi.org/10.1111/j.1834-7819.2007.tb00503.x

    Article  Google Scholar 

  38. 38.

    Baker, H. (2003). Vibration testing. PPI Pulp and Paper International, 45(2), 38.

    Google Scholar 

  39. 39.

    Aimoto, K., Ota, S., Hase, K., Sakai, T., Kodama, K., & Nakamura, H. (2020). Development of an impulse response method for assessing knee osteoarthritis at the femorotibial joint: Comparison between healthy young adults and older women with clinical knee osteoarthritis. Journal of Medical and Biological Engineering, 40(1), 35–40. https://doi.org/10.1007/s40846-019-00484-9

    Article  Google Scholar 

  40. 40.

    Pan, M., Lin, H., & Chen, C. (2021). Design / exploration and verification of an electromagnetic probe for assessing dental implant osseointegration. Measurement. https://doi.org/10.1016/j.measurement.2021.109054

    Article  Google Scholar 

  41. 41.

    Geckili, O., Cilingir, A., Bural, C., Bilmenoglu, C., & Bilhan, H. (2015). Determination of the optimum torque to tighten the smartpegs of magnetic resonance frequency analyses devices: An ex vivo study. Journal of Oral Implantology, 41(6), e252–e256. https://doi.org/10.1563/aaid-joi-D-14-00266

    Article  Google Scholar 

  42. 42.

    Tang, Y., & Li, B. (2014). Torsional resonance frequency analysis: a novel method for assessment of dental implant stability. Clinical Oral Implementation. https://doi.org/10.1111/clr.12350.

    Article  Google Scholar 

  43. 43.

    Yamane, M., Yamaoka, M., Hayashi, M., Furutoyo, I., Komori, N., & Measuring, O. B. (2008). Measuring tooth mobility with a no-contact vibration device. Journal of Periodontal Research. https://doi.org/10.1111/j.1600-0765.2007.00997.x

    Article  PubMed  Google Scholar 

  44. 44.

    Kästel, I., Quincey, G. D., Neugebauer, J., Sader, R., & Gehrke, P. (2019). Does the manual insertion torque of smartpegs affect the outcome of implant stability quotients (ISQ) during resonance frequency analysis (RFA)? International Journal of Implant Dentistry, 1, 1–7. https://doi.org/10.1186/s40729-019-0195-1

    Article  Google Scholar 

  45. 45.

    Bataineh, A. B., & Al-dakes, A. M. (2017). The influence of length of implant on primary stability: An in vitro study using resonance frequency analysis. Journal of Clinical and Experimental Dentistry, 9(1), e1-6. https://doi.org/10.4317/jced.53302

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sim, C. P. C., & Lang, N. P. (2010). Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clinical Oral Implants Research, 21, 2010; 598–604. https://doi.org/10.1111/j.1600-0501.2009.01878.x.

    Article  PubMed  Google Scholar 

  47. 47.

    Yeo, I., Han, J., & Yang, J. (2008). Biomechanical and Histomorphometric Study of Dental Implants with Different Surface Characteristics. Wiley Periodicals. https://doi.org/10.1002/jbm.b.31104

    Article  Google Scholar 

  48. 48.

    Hansson, S., & Norton, M. (1999). The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. Journal of Biomechanics, 32(1999), 829–836.

    CAS  PubMed  Google Scholar 

  49. 49.

    Hansson, S., Johanna, L., Mattisson, I., & Ahlberg, E. (2011). Global biomechanical model for dental implants. Journal of Biomechanics, 44, 1059–1065. https://doi.org/10.1016/j.jbiomech.2011.02.002.

    Article  PubMed  Google Scholar 

  50. 50.

    Su, Y. H., Peng, B. Y., Wang, P. D., & Feng, S. W. (2020). Evaluation of the implant stability and the marginal bone level changes during the first three months of dental implant healing process: A prospective clinical study. Journal of the Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/j.jmbbm.2020.10389

    Article  PubMed  Google Scholar 

Download references



Author information



Corresponding author

Correspondence to Niharika Karnik.

Ethics declarations

Conflict of interest


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karnik, N., Bhadri, K., Bora, U. et al. A Mathematical Model for Biomechanical Evaluation of Micro-motion in Dental Prosthetics using Vibroacoustic RFA. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00636-w

Download citation


  • Dental Implants
  • Mathematical Modelling
  • Micro-motion
  • Resonance Frequency Analysis
  • Vibroacoustic RFA