New Biomechanical Approach for Evaluation of Spinal Pedicle Screw Fixation Stability

Abstract

Purpose

Pull-out test is the conventional biomechanical tool for stability assessments of bone screws. Recently, modal analysis methods (MAM) have gained interest in the fixation stability measurement of dental implants which can be adopted as a new fixation measurement technique for spinal pedicle screws.

Method

To test the applicability and accuracy of MAM in predicting the fixation stability of pedicle screws, two different modal analysis approaches were used. First, pedicle screws were incorporated into polyurethane (PU) foam. Then, the time response of an accelerometer attached to the head of the screw and excited by a shock hammer was recorded to perform classical modal analysis (CMA). Simultaneously, sound modal analysis (SMA) was carried out using a sound recording device to obtain the frequency response of the screw-block structure. Lastly, the destructive pull-out test was performed to extract its tangential stiffness (TS) and yield force (YF).

Results

Linear regression analysis showed a good correlation between CMA and SMA (R2 = 0.99, P < 0.001). Moreover, the two methods did not deviate from the y = x hypothesis. Also, the 1st natural frequency of both methods was the highest in the 30 mm insertion depth and high-density PU (p < 0.05). The same was observed for the TS and YF in pull-out tests.

Conclusion

Standard deviation numbers in the SMA were significantly less than those in the CMA. The accuracy, excellent repeatability, and non-destructive nature of SMA can make it an ideal tool to estimate screw fixation strength in future in-vivo orthopedic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Available.

Code Availability

Not applicable.

References

  1. 1.

    Panjabi, M. M. (2003). Clinical spinal instability and low back pain. Journal of Electromyography Kinesiology, 13, 371–379.

    PubMed  Article  Google Scholar 

  2. 2.

    Varghese, V., Kumar, G. S., & Krishnan, V. (2017). Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Medical Engineering Physics, 40, 28–38.

    PubMed  Article  Google Scholar 

  3. 3.

    Gibson, J. N. A., & Waddell, G. (2005). Surgery for degenerative lumbar spondylosis: Updated Cochrane Review. Spine, 30, 2312–2320.

    PubMed  Article  Google Scholar 

  4. 4.

    Boucher, H. (1959). A method of spinal fusion. The Journal of Bone Joint Surgery, 41, 248–59.

    PubMed  Article  Google Scholar 

  5. 5.

    Roy-Camille, R., Saillant, G., & Mazel, C. (1986). Internal fixation of the lumbar spine with pedicle screw plating. Clinical Orthopaedics Related Research. https://doi.org/10.1097/00003086-198602000-00003

    Article  PubMed  Google Scholar 

  6. 6.

    Chen, C.-S., Chen, W.-J., Cheng, C.-K., Jao, S.-H.E., Chueh, S.-C., & Wang, C.-C. (2005). Failure analysis of broken pedicle screws on spinal instrumentation. Medical Engineering Physics, 27, 487–96.

    PubMed  Article  Google Scholar 

  7. 7.

    Vishnubhotla, S., McGarry, W. B., Mahar, A. T., & Gelb, D. E. (2011). A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. The Spine Journal, 11, 777–781.

    PubMed  Article  Google Scholar 

  8. 8.

    Lill, C. A., Schneider, E., Goldhahn, J., Haslemann, A., & Zeifang, F. (2006). Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Archives of Orthopaedic Trauma Surgery, 126, 686–94.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Zhang, Q., Tan, S., & Chou, S. (2004). Investigation of fixation screw pull-out strength on human spine. Journal of Biomechanics, 37, 479–85.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Čada, R., Frydrýšek, K., Sejda, F., Demel, J., & Pleva, L. (2017). Analysis of locking self-taping bone screws for angularly stable plates. Journal of Medical Biological Engineering, 37, 612–25.

    PubMed  Article  Google Scholar 

  11. 11.

    Javed, F., & Romanos, G. E. (2010). The role of primary stability for successful immediate loading of dental implants A literature review. Journal of Dentistry, 38, 612–20.

    PubMed  Article  Google Scholar 

  12. 12.

    Tolunay, T., Arslan, K., Yaman, O., Dalbayrak, S., & Demir, T. (2015). Biomechanical performance of various cement-augmented cannulated pedicle screw designs for osteoporotic bones. J Spine Deformity, 3, 205–210.

    Article  Google Scholar 

  13. 13.

    Chang, T.-K., & Hsu, C.-C. (2019). Comparison of Different Pullout Test Setups for Evaluation of Bone-Implant Interfacial Strength of Anterior Lumbar Interbody Fusion Devices. Journal of Medical Biological Engineering, 39, 117–125.

    Article  Google Scholar 

  14. 14.

    Ninomiya, K., Iwatsuki, K., Ohnishi, Y.-I., & Yoshimine, T. (2016). Radiological evaluation of the initial fixation between cortical bone trajectory and conventional pedicle screw technique for lumbar degenerative spondylolisthesis. Asian Spine Journal, 10, 251.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Brasiliense, L. B., Lazaro, B. C., Reyes, P. M., Newcomb, A. G., Turner, J. L., Crandall, D. G., & Crawford, N. R. (2013). Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. The Spine Journal, 13, 947–956.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Mar, D. E., Clary, S. J., Burton, D. C., & McIff, T. E. (2019). Biomechanics of prophylactic tethering for proximal junctional kyphosis: characterization of spinous process tether pretensioning and pull-out force. J Spine deformity, 7, 191–6.

    Article  Google Scholar 

  17. 17.

    Hashemi, A., Bednar, D., & Ziada, S. (2009). Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. The Spine Journal, 9, 404–10.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Inceoglu, S., Ferrara, L., & McLain, R. F. (2004). Pedicle screw fixation strength: pullout versus insertional torque. The Spine Journal, 4, 513–8.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Ricci, W. M., Tornetta, P., III., Petteys, T., Gerlach, D., Cartner, J., Walker, Z., & Russell, T. A. (2010). A comparison of screw insertion torque and pullout strength. Journal of Orthopaedic Trauma, 24, 374–8.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Kim, Y.-Y., Choi, W.-S., & Rhyu, K.-W. (2012). Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study. The Spine Journal, 12, 164–168.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Kubiak, A. J., Lindqvist-Jones, K., Dearn, K. D., & Shepherd, D. E. (2019). Comparison of the mechanical properties of two designs of polyaxial pedicle screw. Engineering Failure Analysis, 95, 96–106.

    Article  Google Scholar 

  22. 22.

    Steiner, J. A., Christen, P., Affentranger, R., Ferguson, S. J., & van Lenthe, G. H. (2017). A novel in silico method to quantify primary stability of screws in trabecular bone. Journal of Orthopaedic Research, 35, 2415–2424.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Chevalier, Y., Matsuura, M., Krüger, S., Fleege, C., Rickert, M., Rauschmann, M., & Schilling, C. (2018). Micro-CT and micro-FE analysis of pedicle screw fixation under different loading conditions. Journal of Biomechanics, 70, 204–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Gehrke, S. A., & Marin, G. W. (2015). Biomechanical evaluation of dental implants with three different designs: Removal torque and resonance frequency analysis in rabbits. Annals of Anatomy-Anatomischer Anzeiger, 199, 30–35.

    Article  Google Scholar 

  25. 25.

    Westover, L., Faulkner, G., Hodgetts, W., & Raboud, D. (2016). Advanced system for implant stability testing (ASIST). Journal of Biomechanics, 49, 3651–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Mohammadjavad Einafshar, P. M., Mojtaba Kazemi, Ata Hashemi, Initial stability analysis of spine pedicular screws using modal analysis method, in The Biennial International Conference on Experimetnal Solid Mechanics. 2020.

  27. 27.

    Mohammadjavad Einafshar, A. H., Pedram Mojgani (2020). Evaluation of primary stability of spinal pedicle screws using modal analysis, conventional pull-out and insertion torque. Iranian Journal of Biomedical Engineering.14:169–77.

    Google Scholar 

  28. 28.

    Einafshar, M. & Hashemi, A. (2019). A new method for biomechanical investigation of orthopedic bone screws with modal analysis. 25th Congress of European Society of Biomechanics. 622.

    Google Scholar 

  29. 29.

    Henyš, P., Leuridan, S., Goossens, Q., Mulier, M., Pastrav, L., Desmet, W., Vander Sloten, J., Denis, K., & Čapek, L. (2018). Modal frequency and shape curvature as a measure of implant fixation: A computer study on the acetabular cup. J Medical Engineering Physics, 60, 30–8.

    Article  Google Scholar 

  30. 30.

    Leuridan, S., Goossens, Q., Pastrav, L., Roosen, J., Mulier, M., Denis, K., Desmet, W., & Vander Sloten, J. (2017). Determination of replicate composite bone material properties using modal analysis. Journal of the Mechanical Behavior of Biomedical Materials, 66, 12–8.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Rondon, A., Sariali, E., Vallet, Q., & Grimal, Q. (2017). Modal analysis for the assessment of cementless hip stem primary stability in preoperative THA planning. Medical Engineering Physics, 49, 79–88.

    PubMed  Article  Google Scholar 

  32. 32.

    Taylor, W., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M., Hobatho, M., Rakotomanana, L., & Clift, S. (2002). Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, 35, 767–73.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Scholz, R., Hoffmann, F., von Sachsen, S., Drossel, W.-G., Klöhn, C., & Voigt, C. (2013). Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis. Journal of Biomechanics, 46, 2667–73.

    PubMed  Article  Google Scholar 

  34. 34.

    Einafshar, M. J., Hashemi, A., & van Lenthe, G. H. (2021). Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials. J Computer Methods Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2021.105966

    Article  Google Scholar 

  35. 35.

    Hsu, C. C., Chao, C. K., Wang, J. L., Hou, S. M., Tsai, Y. T., & Lin, J. (2005). Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses. Journal of Orthopaedic Research, 23, 788–794.

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    ASTMF1839. (2016). Standard specification for rigid polyurethane foam for use as a standard material for testing orthopaedic devices and instruments. ASTM International.

    Google Scholar 

  37. 37.

    ASTMF543. (2017). Standard specification and test methods for metallic medical bone screws. ASTM International.

    Google Scholar 

  38. 38.

    Einafshar, M. J., Rouhi, G., Aghighi, M., & Mortazavi, S. J. (2016). Alteration of the Thrust Force Versus Number of Drill Bit Usage in Cortical Bone Drilling. Journal of Orthopedic Spine Trauma. https://doi.org/10.17795/jost-4527

    Article  Google Scholar 

  39. 39.

    Einafshar, M. J., Shahrezaee, M., Shahrezaee, M. H., & Sharifzadeh, S. R. (2020). Biomechanical evaluation of temperature rising and applied force in controlled cortical bone drilling: An animal in vitro study. J Archives of Bone Joint Surgery, 8, 605.

    Google Scholar 

  40. 40.

    Santoni, B., Hynes, R., McGilvray, K., Rodriguez-Canessa, G., Lyons, A., Henson, M., Womack, W., & Puttlitz, C. (2009). Cortical bone trajectory for lumbar pedicle screws. The Spine Journal, 9, 366–373.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Amirouche, F., Solitro, G. F., & Magnan, B. P. (2016). Stability and spine pedicle screws fixation strength—a comparative study of bone density and insertion angle. J Spine Deformity, 4, 261–7.

    Article  Google Scholar 

  42. 42.

    Wang, W., Baran, G. R., Garg, H., Betz, R. R., Moumene, M., & Cahill, P. J. (2014). The benefits of cement augmentation of pedicle screw fixation are increased in osteoporotic bone: A finite element analysis. J Spine Deformity, 2, 248–259.

    Article  Google Scholar 

  43. 43.

    Patel, P. S., Shepherd, D. E., & Hukins, D. W. (2010). The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. J Medical Engineering Physics, 32, 822–8.

    Article  Google Scholar 

  44. 44.

    Karami, K. J., Buckenmeyer, L. E., Kiapour, A. M., Kelkar, P. S., Goel, V. K., Demetropoulos, C. K., & Soo, T. M. (2015). Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Clinical Spine Surgery, 28, E133–E139.

    Google Scholar 

  45. 45.

    Anez-Bustillos, L., Derikx, L. C., Verdonschot, N., Calderon, N., Zurakowski, D., Snyder, B. D., Nazarian, A., & Tanck, E. (2014). Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects. Bone, 58, 160–167.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Sandén, B., Olerud, C., Larsson, S., & Robinson, Y. (2010). Insertion torque is not a good predictor of pedicle screw loosening after spinal instrumentation: A prospective study in 8 patients. Patient Safety in Surgery, 4, 14.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Nakashima, D., Ishii, K., Matsumoto, M., Nakamura, M., & Nagura, T. (2018). A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PloS one. https://doi.org/10.1371/journal.pone.0199362

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support of INSF Grant #97014214 to partially cover the PhD thesis expense of the first author.

Funding

The financial support of Iranian National Science Foundation (INSF) Grant #97014214 was covered partially PhD. Thesis expense of the first author.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mohammadjavad Einafshar. The first draft of the manuscript was written by Mohammadjavad Einafshar and Ata Hashemi edited and revised the manuscript. Ata Hashemi supervised and conceptualized the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ata Hashemi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Einafshar, M., Hashemi, A. New Biomechanical Approach for Evaluation of Spinal Pedicle Screw Fixation Stability. J. Med. Biol. Eng. 41, 447–455 (2021). https://doi.org/10.1007/s40846-021-00628-w

Download citation

Keywords

  • Primary stability
  • Modal analysis
  • Pull-out characterization
  • Acoustic analysis
  • Screw stability evaluation