Multi-Capsule Endoscopy: An initial study on modeling and phantom experimentation of a magnetic capsule train

Abstract

Purpose

Capsule endoscopy offers increased patient comfort and improved visibility of the entire gastrointestinal (GI) tract. Besides imaging, numerous literary studies on capsule endoscopy have demonstrated drug delivery, navigation strategies, tactile sensing for tumor diagnosis, and biopsy. Yet, the size limitation hampers the availability of multiple features within a single capsule. In an effort to increase the space and functionality, we propose the use of multiple capsules.

Methods

All capsules together form a capsule-train, whose wagons are connected with magnetic push/pull forces. Magnets located on each capsule form the virtual magnetic spring. The presence of a preset gap allows for joint tasks on the targeted tissue. The gap in-between capsules also ensures ease of motion throughout the GI, while negating the risk of clinching of tissue parts in between the capsules.

Results

Designed capsule train with two capsules successfully traveled through straight phantom without breaking connection for typical bowel speed. Also, same experiment is repeated with higher (2 × to 16 × of expected) speeds to inspect possible abrupt conditions, where capsules traveled together without any disconnection while maintaining constant distance in-between. Experiment results successfully imitate the developed magnet spring model (10–30% mismatch) even with ignored friction forces and camera pixilation errors.

Conclusion

As future work, we will be working on adapting the capsule train for curved trajectories and perform demonstrations on ex-vivo animal bowel models. With further development, magnetically connected multi-capsule train can be adapted to clinic for improved functionality and multitasking through the GI tract.

This is a preview of subscription content, access via your institution.

Fig. 1

adapted from https://www.everydayhealth.com)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. 1.

    Swain, P. (2003). Wireless capsule endoscopy. Gut. https://doi.org/10.1136/gut.52.suppl_4.iv48

    Article  Google Scholar 

  2. 2.

    Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature, 405(6785), 417. https://doi.org/10.1038/35013140

    Article  Google Scholar 

  3. 3.

    Yun, S., Kim, K., & Nam, S. (2010). Outer-wall loop antenna for ultrawideband capsule endoscope system. IEEE Antennas and Wireless Propagation Letters, 9, 1135–1138. https://doi.org/10.1109/LAWP.2010.2094996

    Article  Google Scholar 

  4. 4.

    Faerber, J., Cummins, G., Pavuluri, S. K., Record, P., Rodriguez, A. R. A., Lay, H. S., & Desmulliez, M. P. Y. (2018). In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Transactions on Biomedical Circuits and Systems, 12(1), 95–105. https://doi.org/10.1109/TBCAS.2017.2759254

    Article  Google Scholar 

  5. 5.

    Hintea, S., Simion, E., & Festila, L. (1996). Radio frequency link used in partially-implanted auditory prosthesis. In Proceedings of Third International Conference on Electronics, Circuits, and Systems (Vol. 2, pp. 1143–1146 vol.2). https://doi.org/https://doi.org/10.1109/ICECS.1996.584624

  6. 6.

    Stewart, F. R., Qiu, Y., Lay, H. S., Newton, I. P., Cox, B. F., Al-Rawhani, M. A., & Cochran, S. (2017). Acoustic sensing and ultrasonic drug delivery in multimodal theranostic capsule endoscopy. Sensors, 17(7), 1–24. https://doi.org/10.3390/s17071553

    Article  Google Scholar 

  7. 7.

    Le, V. H., Leon-Rodriguez, H., Lee, C., Go, G., Zhen, J., Nguyen, VDu., & Park, S. (2016). A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system. Sensors and Actuators A: Physical, 243, 81–89. https://doi.org/10.1016/j.sna.2016.03.020

    Article  Google Scholar 

  8. 8.

    Woods, S. P., & Constandinou, T. G. (2013). Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE transactions on bio-medical engineering, 60(4), 945–953. https://doi.org/10.1109/TBME.2012.2228647

    Article  Google Scholar 

  9. 9.

    Pipe, T., Winstone, B., Melhuish, C., Pipe, A. G., Callaway, M., & Dogramadzi, S. (2017). Toward bio-inspired tactile sensing capsule endoscopy for detection of submucosal tumors. IEEE Sensors Journal, 17(3), 848–857. https://doi.org/10.1109/JSEN.2016.2627798

    Article  Google Scholar 

  10. 10.

    Zhao, A. J., Qian, Y. Y., Sun, H., Hou, X., Pan, J., Liu, X., & Liao, Z. (2018). Screening for gastric cancer with magnetically controlled capsule gastroscopy in asymptomatic individuals. Gastrointestinal Endoscopy, 88(3), 466–474. https://doi.org/10.1016/j.gie.2018.05.003

    Article  Google Scholar 

  11. 11.

    Swain, P., Toor, A., Volke, F., Keller, J., Gerber, J., Rabinovitz, E., & Rothstein, R. I. (2010). Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal endoscopy, 71(7), 1290–1293. https://doi.org/10.1016/j.gie.2010.01.064

    Article  Google Scholar 

  12. 12.

    Valdastri, P., Webster, R. J., Quaglia, C., Quirini, M., Menciassi, A., & Dario, P. (2009). A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Transactions on Robotics, 25(5), 1047–1057. https://doi.org/10.1109/TRO.2009.2014127

    Article  Google Scholar 

  13. 13.

    Yim, S., Gultepe, E., Gracias, D. H., & Sitti, M. (2014). Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE transactions on bio-medical engineering, 61(2), 513–521. https://doi.org/10.1109/TBME.2013.2283369

    Article  Google Scholar 

  14. 14.

    Kong, K., Cha, J., Jeon, D., & Cho, D. D. (2005). A rotational micro biopsy device for the capsule endoscope. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1839–1843). https://doi.org/https://doi.org/10.1109/IROS.2005.1545441

  15. 15.

    Vokoun, D., Beleggia, M., Heller, L., & Šittner, P. (2009). Magnetostatic interactions and forces between cylindrical permanent magnets. Journal of Magnetism and Magnetic Materials, 321(22), 3758–3763. https://doi.org/10.1016/j.jmmm.2009.07.030

    Article  Google Scholar 

  16. 16.

    S.D. Senturia. (2001). Microsystem Design

  17. 17.

    Kellow, J. E., Borody, T. J., Phillips, S. F., Tucker, R. L., & Haddad, A. C. (1986). Human interdigestive motility: variations in patterns from esophagus to colon. Gastroenterology, 91(2), 386–395. https://doi.org/10.1016/0016-5085(86)90573-1

    Article  Google Scholar 

  18. 18.

    Gao, P., Yan, G., Wang, Z., Wang, K., Jiang, P., & Zhou, Y. (2011). A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon. The International Journal of Medical Robotics and Computer Assisted Surgery, 7(3), 256–267. https://doi.org/10.1002/rcs.389

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Furkan Peker.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peker, F., Ferhanoğlu, O. Multi-Capsule Endoscopy: An initial study on modeling and phantom experimentation of a magnetic capsule train. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00610-6

Download citation

Keywords

  • – Capsule endoscopy
  • Distance control
  • Magnetic equilibrium
  • Physical modeling
  • Gastrointestinal treatment