Finite Element Investigation of Fracture Risk Under Postero-Anterior Mobilization on a Lumbar Bone in Elderly With and Without Osteoporosis

Abstract

Purpose

Postero-anterior (PA) mobilization is widely used to manage low back pain by physiotherapists. The PA load is applied through the spinous process of a vertebra. Low bone density is a counter-indication of PA mobilization, whether PA mobilization may cause fractures in fragile vertebrae is unclear. Therefore, the aim of this study was to quantify the role of bone density on a fracture risk in the first lumbar vertebra subjected to PA load.

Methods

A finite element model of the first lumbar (L1) vertebra of an elderly female was created to predict the fracture risk of the PA mobilization. The von Mises stress and minimum principal strain were used as the assessment indicators. Three different bone density cases were evaluated to reflect healthy, osteoporotic, and severe osteoporotic conditions by assuming heterogeneous moduli based on local bone density converted from computed tomographic images.

Results

In the severe osteoporotic condition under PA load, the maximum von Mises stress and largest compressive strain occurred in the pedicles and spinous process. These stress and strain exceeded the yield stress and yield strain indicating a high risk for failure. The resulted stress and strain were also excessive in the pedicles for healthy and moderate osteoporotic conditions.

Conclusions

PA mobilization can increase the risk of vertebra fracture in elderly with osteoporosis. The pedicles and spinous process of osteoporotic L1 vertebra are the critical regions prone to fracture. We recommend that it is crucial to be reduce force when applying the PA mobilization to elderly with osteoporosis.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig. 3
Fig.4
Fig.5

References

  1. 1.

    Maitland, G. D. (2005). Maitland’s Vertebral Manipulation. . Oxford: Elsevier Butterworth-Heinemann.

    Google Scholar 

  2. 2.

    Shah, S. G., & Kage, V. (2016). Effect of seven sessions of posterior-to-anterior spinal mobilisation versus prone press-ups in non-specific low back pain-randomized clinical trial. Journal of Clinical and Diagnostic Research, 10(3), 10–13.

    Google Scholar 

  3. 3.

    Kamel, D. M., Raoof, N. A. A., & Tantawy, S. A. (2016). Efficacy of lumbar mobilization on postpartum low back pain in Egyptian females: A randomized control trial. Journal of Back and Musculoskeletal Rehabilitation, 29(1), 55–63.

    Article  Google Scholar 

  4. 4.

    Kanlayanaphotporn, R., Chiradejnant, A., & Vachalathiti, R. (2010). Immediate effects of the central posteroanterior mobilization technique on pain and range of motion in patients with mechanical neck pain. Disability and Rehabilitation, 32(8), 622–628.

    Article  Google Scholar 

  5. 5.

    Lee, R., & Evans, J. (1997). An in vivo study of the IV movements produced by PA mobilization. Clinical Biomechanics, I2(6), 400–408.

    Article  Google Scholar 

  6. 6.

    Powers, C. M., Kulig, K., Harrison, J., & Bergman, G. (2003). Segmental mobility of the lumbar spine during a posterior to anterior mobilization: Assessment using dynamic MRI. Clinical Biomechanics, 18(1), 80–83.

    Article  Google Scholar 

  7. 7.

    Kulig, K., Landel, R., & Powers, C. M. (2004). Assessment of Lumbar Spine Kinematics Using Dynamic MRI: A Proposed Mechanism of Sagittal Plane Motion Induced by Manual Posterior-to-Anterior Mobilization. Journal of Orthopaedic and Sports Physical Therapy, 34(2), 57–64.

    Article  Google Scholar 

  8. 8.

    Cheung, E. Y. N., Tan, K. C. B., Cheung, C.-L., & Kung, A. W. C. (2016). Osteoporosis in East Asia: Current issues in assessment and management. Osteoporosis and Sarcopenia, 2(3), 118–133.

    Article  Google Scholar 

  9. 9.

    Moro, M., Hecker, A. T., Bouxsein, M. L., & Myers, E. R. (1995). Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcified Tissue International, 56(3), 206–209.

    Article  Google Scholar 

  10. 10.

    Bürklein, D., Lochmüller, E. M., Kuhn, V., Grimm, J., Barkmann, R., Müller, R., & Eckstein, F. (2001). Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. Journal of Biomechanics, 34(5), 579–587.

    Article  Google Scholar 

  11. 11.

    Sran, M. M., Khan, K. M., Zhu, Q., McKay, H. A., & Oxland, T. R. (2004). Failure characteristics of the thoracic spine with a posteroanterior load: Investigating the safety of spinal mobilization. Spine, 29(21), 2382–2388.

    Article  Google Scholar 

  12. 12.

    Bessho, M., & Ã, I. O., Matsuyama, J., Matsumoto, T., & Imai, K. . (2007). Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics, 40, 1745–1753.

    Article  Google Scholar 

  13. 13.

    Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion.pdf. Journal of Biomechanics, 41, 356–367.

    Article  Google Scholar 

  14. 14.

    Tanck, E., Van Aken, J. B., Van Der Linden, Y. M., Schreuder, H. W. B., Binkowski, M., Huizenga, H., & Verdonschot, N. (2009). Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models. Bone, 45(4), 777–783.

    Article  Google Scholar 

  15. 15.

    Klintström, E., Klintström, B., Moreno, R., Brismar, T. B., Pahr, D. H., & Smedby, Ö. (2016). Predicting trabecular bone stiffness from clinical cone-beam CT and HR-pQCT Data; an In vitro study using finite element analysis. PLoS ONE, 11(8), 1–19.

    Article  Google Scholar 

  16. 16.

    Giambini, H., Qin, X., Dragomir-Daescu, D., An, K. N., & Nassr, A. (2016). Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Medical and Biological Engineering and Computing, 54(4), 583–593.

    Article  Google Scholar 

  17. 17.

    Sandino, C., McErlain, D. D., Schipilow, J., & Boyd, S. K. (2017). Mechanical stimuli of trabecular bone in osteoporosis: A numerical simulation by finite element analysis of microarchitecture. Journal of the Mechanical Behavior of Biomedical Materials, 66, 19–27.

    Article  Google Scholar 

  18. 18.

    Boonyoung, C., Kwanyuang, A., & Chatpun, S. (2019). A finite element study of posteroanterior lumbar mobilization on elderly vertebra geometry. In BMEiCON 2018 - 11th Biomedical Engineering International Conference (pp. 1–4).

  19. 19.

    Imai, K., Ohnishi, I., & Bessho, M. (2006). Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site. Spine, 31(16), 1789–1794.

    Article  Google Scholar 

  20. 20.

    Erdem, I., Truumees, E., & van der Meulen, M. C. H. (2013). Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions. Computer Methods in Biomechanics and Biomedical Engineering, 16(7), 736–746.

    Article  Google Scholar 

  21. 21.

    Ji, M. X., & Yu, Q. (2015). Primary osteoporosis in postmenopausal women. Chronic Diseases and Translational Medicine, 1(1), 9–13.

    Article  Google Scholar 

  22. 22.

    Gilsanz, V., Boechat, M. I., Gilsanz, R., Loro, M. L., Roe, T. F., & Goodman, W. G. (1994). Gender differences in vertebral sizes in adults: Biomechanical implications. Radiology, 190(3), 678–682.

    Article  Google Scholar 

  23. 23.

    Panjabi, M. M., Vijay, G., Oxland, T. R., Koichiro, T., Joanne, D., Martin, K., & Mark, P. (1992). Human lumbar vertebrae quantitative three-dimensional anatomy. Spine, 17, 299–306.

    Article  Google Scholar 

  24. 24.

    Tan, S. H., Teo, E. C., & Chua, H. C. (2004). Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. European Spine Journal, 13(2), 137–146.

    Article  Google Scholar 

  25. 25.

    Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897–904.

    Article  Google Scholar 

  26. 26.

    Yoganandan, N., Kumaresan, S., Voo, L., & Pintar, F. A. (1997). Finite element model of the human lower cervical spine: Parametric analysis of the C4–C6 unit. Journal of Biomechanical Engineering, 119(1), 87–92.

    Article  Google Scholar 

  27. 27.

    Guo, L. X., & Li, W. J. (2020). Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Computer Methods in Biomechanics and Biomedical Engineering, 23(2), 69–80.

    Article  Google Scholar 

  28. 28.

    Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2019). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2008), 356–367.

    Google Scholar 

  29. 29.

    Li, J., Huang, S., Tang, Y., Wang, X., & Pan, T. (2017). Biomechanical analysis of the posterior bony column of the lumbar spine. Journal of orthopaedic surgery and research. https://doi.org/10.1186/s13018-017-0631-y.

    Article  Google Scholar 

  30. 30.

    Kurutz, M., Donáth, J., Gálos, M., Varga, P., & Fornet, B. (2008). Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis. Journal of Multidisciplinary Healthcare, 1, 105–121.

    Article  Google Scholar 

  31. 31.

    Imai, K. (2015). Analysis of vertebral bone strength, fracture pattern, and fracture location: A validation study using a computed tomography-based nonlinear finite element analysis. Aging and Disease, 6(3), 180–187.

    Article  Google Scholar 

  32. 32.

    Røhl, L., Larsen, E., Linde, F., Odgaard, A., & Jørgensen, J. (1991). Tensile and compressive properties of cancellous bone. Journal of Biomechanics, 24(12), 1143–1149.

    Article  Google Scholar 

  33. 33.

    Iba, K., Wada, T., Takada, J., & Yamashita, T. (2003). Multiple insufficiency fractures with severe osteoporosis. Journal of Orthopaedic Science, 8(5), 717–720.

    Article  Google Scholar 

  34. 34.

    Cooper, C., Atkinson, E. J., MichaelO’Fallon, W., & Melton, J. L. (1992). Incidence of clinically diagnosed vertebral fractures: A population-based study in rochester, minnesota, 1985–1989. Journal of Bone and Mineral Research, 7(2), 221–227.

    Article  Google Scholar 

  35. 35.

    Ismail, A. A., Cooper, C., Felsenberg, D., Varlow, J., Kanis, J. A., Silman, A. J., & Neill, T. W. O. (1999). International Original Article Number and Type of Vertebral Deformities : Epidemiological Characteristics and Relation to Back Pain and Height Loss. Osteoporosis International, 9, 206–213.

    Article  Google Scholar 

  36. 36.

    Bruno, A. G., Burkhart, K., Allaire, B., Anderson, D. E., & Bouxsein, M. L. (2017). Spinal Loading Patterns From Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region. Journal of Bone and Mineral Research, 32(6), 1282–1290.

    Article  Google Scholar 

  37. 37.

    Schmid, T., Heini, P., & Benneker, L. (2017). A rare case of non-traumatic, multi-level, bilateral pedicle fractures of the lumbar spine in a 60-year-old patient. European Spine Journal, 26, 1–5.

    Article  Google Scholar 

  38. 38.

    Seo, M. R. N., Park, S. Y., Park, J. S., Jin, W., & Ryu, K. N. (2011). Spinous process fractures in osteoporotic thoracolumbar vertebral fractures. British Journal of Radiology, 84(1007), 1046–1049.

    Article  Google Scholar 

  39. 39.

    Goel, V. K., Park, H., & Kong, W. (1994). Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. Journal of Biomechanical Engineering, 116(4), 377–383.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge the PhD scholarship by Walailak University and an international research internship scholarship by Faculty of Medicine, Prince of Songkla University awarded to Mrs. Chadapa Rungruangbaiyok. We would like to thank Biomechanics Section, KU Leuven University for the research internship hosting. We also thank Dr. Atichart Kwanyuang for great advices about the computational simulation. We appreciate the very kind support and suggestions from CERLab members.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Surapong Chatpun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This project was approved by the ethical committee, faculty of medicine, Prince of Songkla University (REC.61–364-25–2).

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rungruangbaiyok, C., Azari, F., van Lenthe, G.H. et al. Finite Element Investigation of Fracture Risk Under Postero-Anterior Mobilization on a Lumbar Bone in Elderly With and Without Osteoporosis. J. Med. Biol. Eng. (2021). https://doi.org/10.1007/s40846-021-00607-1

Download citation

Keywords

  • Postero-anterior mobilization
  • Osteoporosis
  • Finite element analysis
  • Minimum principal strain