Compression Sleeve Changes Corticomuscular Connectivity and Sensorimotor Function

Abstract

Purpose

The application of compression sleeve (CS) has rapidly developed in the medicine and rehabilitation fields and is commonly used for improving sensorimotor function. Despite a considerable amount of sensorimotor-related evidence and clinical outcomes analysis being available, little is known about the effects of CS-induced sensory afferent input on corticomuscular functional connectivity (corticomuscular coherence, CMC) and reaction time (RT). Therefore, the purpose of this study was to investigate the effect of wearing CS on CMC and sensorimotor performance.

Methods

Fourteen healthy volunteers were enrolled in this study and randomly performed visual tracking motor task, RT test and joint position sense (JPS) test with and without CS (CS and non-CS conditions). Electroencephalography and electromyography of the wrist extensor during the visual tracking motor task were used to calculate CMC. Joint angle steadiness, joint position error, pre-motor time (PMT), electromechanical delay (EMD) time and RT were calculated to compare sensorimotor performance with and without CS.

Results

When wearing CS decreased CMC, shortened both PMT and RT compared to the non-CS condition (p < .05). The JPS and the steadiness of the wrist joint were improved when CS was worn (p < .05).

Conclusion

Our findings indicated that wearing CS altered CMC and improved sensorimotor function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Thijs, Y., Vingerhoets, G., Pattyn, E., Rombaut, L., & Witvrouw, E. (2010). Does bracing influence brain activity during knee movement: An fMRI study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(8), 1145–1149.

    Article  Google Scholar 

  2. 2.

    Michael, J. S., Dogramaci, S. N., Steel, K. A., & Graham, K. S. (2014). What is the effect of compression garments on a balance task in female athletes? Gait and Posture, 39(2), 804–809.

    Article  Google Scholar 

  3. 3.

    Kuster, M. S., Grob, K., Kuster, M., Wood, G. A., & Gachter, A. (1999). The benefits of wearing a compression sleeve after ACL reconstruction. Medicine and Science in Sports and Exercise, 31(3), 368–371.

    Article  Google Scholar 

  4. 4.

    Birmingham, T. B., Kramer, J. F., Inglis, J. T., Mooney, C. A., Murray, L. J., Fowler, P. J., et al. (1998). Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests. The American Journal of Sports Medicine, 26(4), 562–566.

    Article  Google Scholar 

  5. 5.

    Chu, J. C., Kane, E. J., Arnold, B. L., & Gansneder, B. M. (2002). The effect of a neoprene shoulder stabilizer on active joint-reposition sense in subjects with stable and unstable shoulders. Journal of Athletic Training, 37(2), 141–145.

    Google Scholar 

  6. 6.

    Van Tiggelen, D., Coorevits, P., & Witvrouw, E. (2008). The use of a neoprene knee sleeve to compensate the deficit in knee joint position sense caused by muscle fatigue. Scandinavian Journal of Medicine and Science in Sports, 18(1), 62–66.

    Article  Google Scholar 

  7. 7.

    Pearce, A. J., Kidgell, D. J., Grikepelis, L. A., & Carlson, J. S. (2009). Wearing a sports compression garment on the performance of visuomotor tracking following eccentric exercise: A pilot study. Journal of Science and Medicine in Sport, 12(4), 500–502.

    Article  Google Scholar 

  8. 8.

    You, S. H., Granata, K. P., & Bunker, L. K. (2004). Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: A preliminary investigation. The Journal of Orthopaedic and Sports Physical Therapy, 34(8), 449–460.

    Article  Google Scholar 

  9. 9.

    Baykara, S., & Alban, K. (2019). Visual and auditory reaction times of patients with opioid use disorder. Psychiatry Investigation, 16(8), 602–606.

    Article  Google Scholar 

  10. 10.

    Bisset, L. M., Coppieters, M. W., & Vicenzino, B. (2009). Sensorimotor deficits remain despite resolution of symptoms using conservative treatment in patients with tennis elbow: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 90(1), 1–8.

    Article  Google Scholar 

  11. 11.

    Bisset, L. M., Russell, T., Bradley, S., Ha, B., & Vicenzino, B. T. (2006). Bilateral sensorimotor abnormalities in unilateral lateral epicondylalgia. Archives of Physical Medicine and Rehabilitation, 87(4), 490–495.

    Article  Google Scholar 

  12. 12.

    Weiss, A. D. (1965). The locus of reaction time change with set, motivation, and age. Journal of Gerontology, 20, 60–64.

    Article  Google Scholar 

  13. 13.

    Cavanagh, P. R., & Komi, P. V. (1979). Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. European Journal of Applied Physiology and Occupational Physiology, 42(3), 159–163.

    Article  Google Scholar 

  14. 14.

    Stanek, J. M., McLoda, T. A., McCaw, S., & Laudner, K. (2006). The effects of external support on electromechanical delay of the peroneus longus muscle. Electromyography and Clinical Neurophysiology, 46(6), 349–354.

    Google Scholar 

  15. 15.

    Midgley, W., Hopkins, J. T., Feland, B., Kaiser, D., Merrill, G., & Hunter, I. (2007). The effects of external ankle support on dynamic restraint characteristics of the ankle in volleyball players. Clinical Journal of Sport Medicine, 17(5), 343–348.

    Article  Google Scholar 

  16. 16.

    Botwinick, J., & Thompson, L. W. (1966). Premotor and motor components of reaction time. Journal of Experimental Psychology, 71(1), 9–15.

    Article  Google Scholar 

  17. 17.

    Matsuya, R., Ushiyama, J., & Ushiba, J. (2013). Prolonged reaction time during episodes of elevated beta-band corticomuscular coupling and associated oscillatory muscle activity. Journal of Applied Physiology, 114(7), 896–904.

    Article  Google Scholar 

  18. 18.

    Kristeva, R., Patino, L., & Omlor, W. (2007). Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage, 36(3), 785–792.

    Article  Google Scholar 

  19. 19.

    McClelland, V. M., Cvetkovic, Z., & Mills, K. R. (2012). Modulation of corticomuscular coherence by peripheral stimuli. Experimental Brain Research, 219(2), 275–292.

    Article  Google Scholar 

  20. 20.

    Pan, L. L. H., Yang, W. W., Kao, C. L., Tsai, M. W., Wei, S. H., Fregni, F., et al. (2018). Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  21. 21.

    Brown, P., Salenius, S., Rothwell, J. C., & Hari, R. (1998). Cortical correlate of the piper rhythm in humans. Journal of Neurophysiology, 80(6), 2911–2917.

    Article  Google Scholar 

  22. 22.

    Kilner, J., Baker, S., Salenius, S., Jousmäki, V., Hari, R., & Lemon, R. (1999). Task-dependent modulation of 15–30 Hz coherence between rectified EMGs from human hand and forearm muscles. The Journal of Physiology, 516(2), 559–570.

    Article  Google Scholar 

  23. 23.

    Johnson, A. N., Wheaton, L. A., & Shinohara, M. (2011). Attenuation of corticomuscular coherence with additional motor or non-motor task. Clinical Neurophysiology, 122(2), 356–363.

    Article  Google Scholar 

  24. 24.

    Yang, Q., Fang, Y., Sun, C. K., Siemionow, V., Ranganathan, V. K., Khoshknabi, D., et al. (2009). Weakening of functional corticomuscular coupling during muscle fatigue. Brain Research, 1250, 101–112.

    Article  Google Scholar 

  25. 25.

    Riddle, C. N., & Baker, S. N. (2005). Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. The Journal of Physiology, 566(Pt 2), 625–639.

    Article  Google Scholar 

  26. 26.

    Witham, C. L., Riddle, C. N., Baker, M. R., & Baker, S. N. (2011). Contributions of descending and ascending pathways to corticomuscular coherence in humans. The Journal of Physiology, 589(15), 3789–3800.

    Article  Google Scholar 

  27. 27.

    Tecchio, F., Zappasodi, F., Melgari, J. M., Porcaro, C., Cassetta, E., & Rossini, P. M. (2006). Sensory-motor interaction in primary hand cortical areas: A magnetoencephalography assessment. Neuroscience, 141(1), 533–542.

    Article  Google Scholar 

  28. 28.

    Rosenberg, J., Amjad, A., Breeze, P., Brillinger, D., & Halliday, D. (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and Molecular Biology, 53(1), 1–31.

    Article  Google Scholar 

  29. 29.

    Lai, M. I., Pan, L. L., Tsai, M. W., Shih, Y. F., Wei, S. H., & Chou, L. W. (2016). Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Topics in Stroke Rehabilitation, 23(3), 154–162.

    Article  Google Scholar 

  30. 30.

    Gallet, C., & Julien, C. (2011). The significance threshold for coherence when using the Welch’s periodogram method: Effect of overlapping segments. Biomedical Signal Processing and Control, 6(4), 405–409.

    Article  Google Scholar 

  31. 31.

    Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews. Neuroscience, 5(7), 532–546.

    Article  Google Scholar 

  32. 32.

    Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5670–5674.

    Article  Google Scholar 

  33. 33.

    Yotani, K., Tamaki, H., Yuki, A., Kirimoto, H., Kitada, K., Ogita, F., et al. (2011). Response training shortens visuo-motor related time in athletes. International Journal of Sports Medicine, 32(8), 586–590.

    Article  Google Scholar 

  34. 34.

    Linford, C. W., Hopkins, J. T., Schulthies, S. S., Freland, B., Draper, D. O., & Hunter, I. (2006). Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle. Archives of Physical Medicine and Rehabilitation, 87(3), 395–401.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Chou.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval

This study was approved by the Institutional Review Board at National Yang-Ming University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, WW., Pan, LL.H., Chen, CS. et al. Compression Sleeve Changes Corticomuscular Connectivity and Sensorimotor Function. J. Med. Biol. Eng. 41, 108–114 (2021). https://doi.org/10.1007/s40846-021-00601-7

Download citation

Keywords

  • Compression garment
  • External support
  • Corticomuscular coherence
  • EEG
  • Motor quickness
  • Pressure