Skip to main content

Advertisement

Log in

Evidence-based Customized Ankle-Foot Orthosis with Energy Storage

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Three-dimensional printed ankle-foot orthoses (AFO) have been used in stroke patients recently, but there was little evidence of gait improvement. Here, we designed a novel customized AFO with energy storage, named Energy-Storage 3D Printed Ankle-Foot Orthosis (ESP-AFO), and investigated its effects on gait improvement in stroke patients.

Methods

12 stroke survivors were recruited (9 females/3 males, age: 55.58 ± 5.9 y/o). Participants were instructed to walk (1) bare foot (BF), with (2) anterior AFO (AAFO), and with (3) ESP-AFO, respectively. Gait analysis by the motion capture system was performed bilaterally (SL: Sound limb; AL: Affected limb). Participant satisfaction and fatigue were also compared.

Results

We found that the ESP-AFO significantly increased bilateral gait velocity (SL: ESP-AFO 52.62 ± 19.18 cm/s, BF 47.61 ± 22.78 cm/s; AL: ESP-AFO 52.78 ± 19.57 cm/s, BF 47.31 ± 23.27 cm/s), stride length (SL: ESP-AFO 78.96 ± 19.16 cm, BF 74.89 ± 21.92 cm; AL: ESP-AFO 79.06 ± 17.82 cm, BF 74.08 ± 21.31 cm). ESP-AFO reversed drop-foot in swing phase and created a higher ankle moment at terminal stance. Patients also reported more satisfaction with the ESP-AFO (total satisfaction: ESP-AFO 4.3 ± 0.47, AAFO 3.3 ± 0.62).

Conclusion

We demonstrated that the novel custom-made ESP-AFO improved the gait performance with better satisfaction than traditional AFOs did.

(Registry number of clinical trial: A-BR-106-005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128. https://doi.org/10.1016/s0140-6736(12)61728-0.

    Article  Google Scholar 

  2. Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2197–2223. https://doi.org/10.1016/s0140-6736(12)61689-4.

    Article  Google Scholar 

  3. Jorgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1995). Recovery of walking function in stroke patients: The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 76(1), 27–32.

    Article  Google Scholar 

  4. Gok, H., Kucukdeveci, A., Altinkaynak, H., Yavuzer, G., & Ergin, S. (2003). Effects of ankle-foot orthoses on hemiparetic gait. Clinical Rehabilitation, 17(2), 137–139. https://doi.org/10.1191/0269215503cr605oa.

    Article  Google Scholar 

  5. de Wit, D. C., Buurke, J. H., Nijlant, J. M., Ijzerman, M. J., & Hermens, H. J. (2004). The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial. Clinical Rehabilitation, 18(5), 550–557. https://doi.org/10.1191/0269215504cr770oa.

    Article  Google Scholar 

  6. Tyson, S. F., & Thornton, H. A. (2001). The effect of a hinged ankle foot orthosis on hemiplegic gait: Objective measures and users’ opinions. Clinical Rehabilitation, 15(1), 53–58. https://doi.org/10.1191/026921501673858908.

    Article  Google Scholar 

  7. Holtkamp, F., Wouters, E., van Hoof, J., van Zaalen, Y., & Verkerk, M. (2015). Use of and satisfaction with ankle foot orthoses. Clinical Research on Foot and Ankle, 3(167), 1–8.

    Google Scholar 

  8. Karimi, M., Kavyani, M., Mohammadi, A., & Ebrahimi, M. (2017). Thermoplastic sheet for orthoses, a review of literature. EC Orthopaedics, 5(5), 189–193.

    Google Scholar 

  9. Cattaneo, D., Marazzini, F., Crippa, A., & Cardini, D. (2002). Do static or dynamic AFOs improve balance? Clinical Rehabilitation, 16(8), 894–899.

    Article  Google Scholar 

  10. Suat, E., Fatma, U., & Nilgun, B. (2011). The effects of dynamic ankle-foot orthoses on functional ambulation activities, weight bearing and spatio-temporal characteristics of hemiparetic gait. Disability and Rehabilitation, 33(25–26), 2605–2611. https://doi.org/10.3109/09638288.2011.582926.

    Article  Google Scholar 

  11. Slijper, A., Danielsson, A., & Willen, C. (2012). Ambulatory function and perception of confidence in persons with stroke with a custom-made hinged versus a standard ankle foot orthosis. Rehabilitation Research and Practice, 2012, 206495. https://doi.org/10.1155/2012/206495.

    Article  Google Scholar 

  12. Farley, J. (2009). Controlling drop foot: Beyond standard AFOs. Lower Extrimity Review, October.

  13. Shih, A., Park, D., Yang, Y., Chisena, R., & Wu, D. (2017). Cloud-based design and additive manufacturing of custom orthoses. Procedia CIRP, 63, 156–160.

    Article  Google Scholar 

  14. Jin, Y., He, Y., & Shih, A. (2016). Process planning for the fuse deposition modeling of ankle-foot-othoses. Procedia CIRP, 42, 760–765.

    Article  Google Scholar 

  15. Harper, N. G., Esposito, E. R., Wilken, J. M., & Neptune, R. R. (2014). The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clinical Biomechanics, 29(8), 877–884. https://doi.org/10.1016/j.clinbiomech.2014.07.005.

    Article  Google Scholar 

  16. Yeh, C., Cheng, Y., Chuang, B., Kuo, L., & Su, F. (2018). Development of energy-storage ankle-foot orthosis using 3d printing technology. International Journal of Advances in Science, Engineering and Technology, 6(4), 51–53.

    Google Scholar 

  17. Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D.-H., et al. (2017). Ankle-foot orthosis made by 3d printing technique and automated design software. Applied Bionics and Biomechanics, 2017, 6. https://doi.org/10.1155/2017/9610468.

    Article  Google Scholar 

  18. Walbran, M., Turner, K., & McDaid, A. J. (2016). Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint. Cogent Engineering, 3(1). https://doi.org/10.1080/23311916.2016.1227022.

  19. Mavroidis, C., Ranky, R. G., Sivak, M. L., Patritti, B. L., DiPisa, J., Caddle, A., et al. (2011). Patient specific ankle-foot orthoses using rapid prototyping. Journal of Neuroengineering and Rehabilitation, 8, 1. https://doi.org/10.1186/1743-0003-8-1.

    Article  Google Scholar 

  20. Choi, H., Peters, K. M., MacConnell, M. B., Ly, K. K., Eckert, E. S., & Steele, K. M. (2017). Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function during unimpaired gait. Journal of Biomechanics, 64, 145–152. https://doi.org/10.1016/j.jbiomech.2017.09.015.

    Article  Google Scholar 

  21. Creylman, V., Muraru, L., Pallari, J., Vertommen, H., & Peeraer, L. (2013). Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot. Prosthetics and Orthotics International, 37(2), 132–138. https://doi.org/10.1177/0309364612451269.

    Article  Google Scholar 

  22. Faustini, M. C., Neptune, R. R., Crawford, R. H., & Stanhope, S. J. (2008). Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Transactions on Biomedical Engineering, 55(2 Pt 1), 784–790. https://doi.org/10.1109/tbme.2007.912638.

    Article  Google Scholar 

  23. Telfer, S., Pallari, J., Munguia, J., Dalgarno, K., McGeough, M., & Woodburn, J. (2012). Embracing additive manufacture: Implications for foot and ankle orthosis design. BMC Musculoskeletal Disorders, 13, 84. https://doi.org/10.1186/1471-2474-13-84.

    Article  Google Scholar 

  24. Vermandel, M., Geldhof, J., Vasiliauskaite, E., Forward, M., & Plasschaert, F. (2018). Development and clinical evaluation of laser-sintered ankle foot orthoses AU—Deckers, Jan Patrick. Plastics, Rubber and Composites, 47(1), 42–46. https://doi.org/10.1080/14658011.2017.1413760.

    Article  Google Scholar 

  25. Masood, S. H., & Lim, B. S. (1995). Concurrent intelligent rapid prototyping environment. Journal of Intelligent Manufacturing, 6(5), 291–310. https://doi.org/10.1007/BF00124674.

    Article  Google Scholar 

  26. Yeh, C. H., Tsai, Y. C., Su, F. C., Kuo, L. C., Chang, K., & Chuang, P. H. (2018). Mechanical problem in 3D printed ankle-foot orthoses with function of energy storage. AIP Conference Proceedings, 2046(1), 020019-1–020019-7.

  27. Kadaba, M. P., Ramakrishnan, H., & Wootten, M. (1990). Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research, 8(3), 383–392.

    Article  Google Scholar 

  28. Wu, W. L., Su, F. C., Cheng, Y. M., Huang, P. J., Chou, Y. L., & Chou, C. K. (2000). Gait analysis after ankle arthrodesis. Gait & Posture, 11(1), 54–61.

    Article  Google Scholar 

  29. Chen, Y. C., Lou, S. Z., Huang, C. Y., & Su, F. C. (2010). Effects of foot orthoses on gait patterns of flat feet patients. Clinical Biomechanics (Bristol, Avon), 25(3), 265–270. https://doi.org/10.1016/j.clinbiomech.2009.11.007.

    Article  Google Scholar 

  30. Lou, S.-Z., Su, F.-C., & Chen, Y.-C. (2015). Effects of arch support insoles on gait patterns of patients with knee osteoarthritis. Journal of Medical and Biological Engineering, 35(2), 202–208. https://doi.org/10.1007/s40846-015-0021-z.

    Article  Google Scholar 

  31. Demers, L., Monette, M., Lapierre, Y., Arnold, D. L., & Wolfson, C. (2002). Reliability, validity, and applicability of the Quebec user evaluation of satisfaction with assistive technology (QUEST 2.0) for adults with multiple sclerosis. Disability and Rehabilitation, 24(1–3), 21–30.

    Article  Google Scholar 

  32. Chuang, L. L., Lin, K. C., Hsu, A. L., Wu, C. Y., Chang, K. C., Li, Y. C., et al. (2015). Reliability and validity of a vertical numerical rating scale supplemented with a faces rating scale in measuring fatigue after stroke. Health and Quality of Life Outcomes, 13, 91. https://doi.org/10.1186/s12955-015-0290-9.

    Article  Google Scholar 

  33. Iwata, M., Kondo, I., Sato, Y., Satoh, K., Soma, M., & Tsushima, E. (2003). An ankle-foot orthosis with inhibitor bar: Effect on hemiplegic gait. Archives of Physical Medicine and Rehabilitation, 84(6), 924–927.

    Article  Google Scholar 

  34. Abe, H., Michimata, A., Sugawara, K., Sugaya, N., & Izumi, S. (2009). Improving gait stability in stroke hemiplegic patients with a plastic ankle-foot orthosis. The Tohoku Journal of Experimental Medicine, 218(3), 193–199.

    Article  Google Scholar 

  35. Simons, C. D., van Asseldonk, E. H., van der Kooij, H., Geurts, A. C., & Buurke, J. H. (2009). Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing asymmetry and the contribution of each lower limb to balance control. Clinical Biomechanics (Bristol, Avon), 24(9), 769–775. https://doi.org/10.1016/j.clinbiomech.2009.07.006.

    Article  Google Scholar 

  36. Wang, R. Y., Yen, L., Lee, C. C., Lin, P. Y., Wang, M. F., & Yang, Y. R. (2005). Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations. Clinical Rehabilitation, 19(1), 37–44. https://doi.org/10.1191/0269215505cr797oa.

    Article  Google Scholar 

  37. Thijssen, D. H., Paulus, R., van Uden, C. J., Kooloos, J. G., & Hopman, M. T. (2007). Decreased energy cost and improved gait pattern using a new orthosis in persons with long-term stroke. Archives of Physical Medicine and Rehabilitation, 88(2), 181–186. https://doi.org/10.1016/j.apmr.2006.11.014.

    Article  Google Scholar 

  38. Bleyenheuft, C., Caty, G., Lejeune, T., & Detrembleur, C. (2008). Assessment of the Chignon dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults. Annales de Réadaptation et de Médecine Physique, 51(3), 154–160. https://doi.org/10.1016/j.annrmp.2007.12.005.

    Article  Google Scholar 

  39. Kuo, F.-C., Cai, D.-C., & Liau, B.-Y. (2020). Foot arch support effect on lumbo-pelvic kinematics and centre of pressure excursion during stand-to-sit transfer in different foot types. Journal of Medical and Biological Engineering, 40(2), 169–178. https://doi.org/10.1007/s40846-019-00499-2.

    Article  Google Scholar 

  40. Sekiguchi, Y., Kokubun, T., Hanawa, H., Shono, H., Tsuruta, A., & Kanemura, N. (2020). Foot kinematics of impact absorption and force exertion during depth-jump using a multi-segment foot model. Journal of Medical and Biological Engineering, 40(5), 757–765. https://doi.org/10.1007/s40846-020-00560-5.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Chung-Yi Lee and Wan-Ni Chen for providing statistical consulting services from the Biostatistics Consulting Center, National Cheng Kung University Hospital.

Funding

This study was supported by the Ministry of Science and Technology of Taiwan (Grant No.: MOST 107-2218-E-006-010-.) and by the Medical Device Innovation Center (MDIC), National Cheng Kung University (NCKU) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MoE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fong-Chin Su.

Ethics declarations

Conflict of interest

None.

Ethical Approval

Yes.

Consent to Participate

Yes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Yeh, CH., Tsai, YC. et al. Evidence-based Customized Ankle-Foot Orthosis with Energy Storage. J. Med. Biol. Eng. 41, 126–136 (2021). https://doi.org/10.1007/s40846-020-00593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-020-00593-w

Keywords

Navigation