Skip to main content
Log in

Microcontroller-Based Clip Force Reading System for Brain Aneurysms

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

An aneurysm is a balloon-like bulge on an artery wall. Aneurysms can rupture easily, potentially causing a cerebral hemorrhage. To prevent this, a small clip is surgically installed. Importantly, if the clip is opened repeatedly during the operation, the clip closing force may change. Sometimes, the closing force of the clip cannot be accurately predicted during the operation. The main objectives of the present study were to prevent re-bleeding and to accurately measure the force of the clip for reducing the duration of the procedure.

Methods

A well-designed aneurysm clip microforce sensing system was developed in this study. The Brain Aneurysm Clip Force Reading System allows the clip force in the surgical operation to be measured by using an S-type load cell. The system has a simple structure that includes a clip force sensor and a liquid–crystal display screen. The main contribution of the study is a small, low-cost printed circuit board design that can be used in surgery.

Results

The proposed system was verified with 12 differently shaped aneurysm clips, and the results were analyzed. For the obtained and measured values, the mean squared error and maximum variance were 1.53 and 6.76 g2, respectively.

Conclusion

The results indicated that the proposed system can be used in surgical operations. Because the developed system informs doctors of the correct clip force, it can save lives in operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Turjman, A. S., Turjman, F., & Edelman, E. R. (2014). Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation, 129(3), 373–382. https://doi.org/10.1161/CIRCULATIONAHA.113.001444.

    Article  Google Scholar 

  2. Xi, G., Keep, R. F., & Hoff, J. T. (2006). Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurology. https://doi.org/10.1016/S1474-4422(05)70283-0.

    Article  Google Scholar 

  3. Seibert, B., Tummala, R. P., Chow, R., Faridar, A., Mousavi, S. A., & Divani, A. A. (2011). Intracranial aneurysms: Review of current treatment options and outcomes. Frontiers in Neurology. https://doi.org/10.3389/fneur.2011.00045.

    Article  Google Scholar 

  4. Potts, M. B., Lau, D., Abla, A. A., Kim, H., Young, W. L., & Lawton, M. T. (2015). Current surgical results with low-grade brain arteriovenous malformations. Journal of Neurosurgery, 122(4), 912–920. https://doi.org/10.3171/2014.12.JNS14938.

    Article  Google Scholar 

  5. Lawton, M. T., Ho, J. C., Bichard, W. D., Coons, S. W., Zabramski, J. M., & Spetzler, R. F. (1996). Titanium aneurysm clips: Part I-Mechanical, radiological, and biocompatibility testing. Neurosurgery, 38(6), 1158–1163.

    Google Scholar 

  6. Molyneux, A. J., Kerr, R. S., Yu, L. M., Clarke, M., Sneade, M., Yarnold, J. A., et al. (2005). International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet, 366(9488), 809–817. https://doi.org/10.1016/S0140-6736(05)67214-5.

    Article  Google Scholar 

  7. Walendy, V., & Stang, A. (2017). Clinical management of unruptured intracranial aneurysm in Germany: A nationwide observational study over a 5-year period (2005–2009). British Medical Journal Open. https://doi.org/10.1136/bmjopen-2016-012294.

    Article  Google Scholar 

  8. Vlak, M. H. M., Algra, A., Brandenburg, R., & Rinkel, G. J. E. (2011). Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. The Lancet Neurology, 10(7), 626–636. https://doi.org/10.1016/S1474-4422(11)70109-0.

    Article  Google Scholar 

  9. Huang, M. C., Baaj, A. A., Downes, K., Youssef, A. S., Sauvageau, E., Van Loveren, H. R., et al. (2011). Paradoxical trends in the management of unruptured cerebral aneurysms in the united states: Analysis of nationwide database over a 10-year period. Stroke, 42(6), 1730–1735. https://doi.org/10.1161/STROKEAHA.110.603803.

    Article  Google Scholar 

  10. Reich, T., & Schmidt, F. (1989). Stresses in aneurysm clips. Clinical Materials, 4(3), 193–200. https://doi.org/10.1016/0267-6605(89)90029-2.

    Article  Google Scholar 

  11. Louw, D. F., Asfora, W. T., & Sutherland, G. R. (2001). A brief history of aneurysm clips. Neurosurgical Focus. https://doi.org/10.3171/foc.2001.11.2.5.

    Article  Google Scholar 

  12. Vieco, P. T., Morin, E. E., & Gross, C. E. (1996). CT angiography in the examination of patients with aneurysm clips. AJNR. American Journal of Neuroradiology, 17(3), 455–457.

    Google Scholar 

  13. Naidech, A. M., Janjua, N., Kreiter, K. T., Ostapkovich, N. D., Fitzsimmons, B. F., Parra, A., et al. (2005). Predictors and impact of aneurysm rebleeding after subarachnoid hemorrhage. Archives of Neurology, 62(3), 410–416. https://doi.org/10.1001/archneur.62.3.410.

    Article  Google Scholar 

  14. Zhang, L., Guo, S., Yu, H., & Song, Y. (2017). Performance evaluation of a strain-gauge force sensor for a haptic robot-assisted catheter operating system. Microsystem Technologies, 23(10), 5041–5050. https://doi.org/10.1007/s00542-017-3380-2.

    Article  Google Scholar 

  15. Petteys, R. J., Spitz, S. M., Syed, H., Rice, R. A., Sarabia-Estrada, R., Goodwin, C. R., et al. (2017). Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury. Journal of Clinical Neuroscience, 43, 229–234. https://doi.org/10.1016/j.jocn.2017.04.031.

    Article  Google Scholar 

  16. Funabashi, M., Nougarou, F., Descarreaux, M., Prasad, N., & Kawchuk, G. (2017). Influence of spinal manipulative therapy force magnitude and application site on spinal tissue loading: A biomechanical robotic serial dissection study in porcine motion segments. Journal of Manipulative and Physiological Therapeutics, 40(6), 387–396. https://doi.org/10.1016/j.jmpt.2017.05.003.

    Article  Google Scholar 

  17. Bao, X., Guo, S., Xiao, N., Li, Y., & Shi, L. (2018). Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot. Biomedical Microdevices. https://doi.org/10.1007/s10544-018-0318-0.

    Article  Google Scholar 

  18. Wei, Y., & Xu, Q. (2015). An overview of micro-force sensing techniques. Sensors and Actuators A: Physical.. https://doi.org/10.1016/j.sna.2015.09.028.

    Article  Google Scholar 

  19. Taibi, A., Gadda, G., Gambaccini, M., Menegatti, E., Sisini, F., & Zamboni, P. (2017). Investigation of cerebral venous outflow in microgravity. Physiological Measurement, 38(11), 1939–1952. https://doi.org/10.1088/1361-6579/aa8980.

    Article  Google Scholar 

  20. Morita, N., Harada, T., & Noguchi, H. (2017). Simple method of using strain gages to estimate stress fields near a notch in structures subject to large deflections. Journal of Testing and Evaluation, 45(5), 20150399. https://doi.org/10.1520/jte20150399.

    Article  Google Scholar 

  21. Engel, J., Chen, J., & Liu, C. (2003). Development of polyimide flexible tactile sensor skin. Journal of Micromechanics and Microengineering, 13(3), 359–366. https://doi.org/10.1088/0960-1317/13/3/302.

    Article  Google Scholar 

  22. Wettels, N., Popovic, D., Santos, V. J., Johansson, R. S., & Loeb, G. E. (2007). Biomimetic tactile sensor for control of grip. In 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07 (pp. 923–932). https://doi.org/10.1109/ICORR.2007.4428534

  23. Sohgawa, M., Huang, Y. M., Yamashita, K., Kanashima, T., Noda, M., Okuyama, M., & Noma, H. (2007). Fabrication and characterization of silicon-polymer beam structures for cantilever-type tactile sensors. In TRANSDUCERS and EUROSENSORS ’074th international conference on solid-state sensors, actuators and microsystems (pp. 1461–1464). https://doi.org/10.1109/SENSOR.2007.4300420

  24. Choi, W.-C. (2010). Polymer micromachined flexible tactile sensor for three-axial loads detection. Transactions on Electrical and Electronic Materials, 11(3), 130–133. https://doi.org/10.4313/teem.2010.11.3.130.

    Article  Google Scholar 

  25. Kutbay, U., Hardalaç, F., Akbulut, M., Akaslan, Ü., & Serhatlıoğlu, S. (2016). A computer-aided diagnosis system for measuring carotid artery intima-media thickness (IMT) using quaternion vectors. Journal of Medical Systems. https://doi.org/10.1007/s10916-016-0507-4.

    Article  Google Scholar 

  26. Najwer, M., & Niesłony, P. (2016). Microhardness and strength properties of metallic joint AA2519-AA1050-Ti6Al4V after various heat treatments. Procedia Engineering, 149, 346–351. https://doi.org/10.1016/j.proeng.2016.06.677.

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed at Gazi University, Engineering Faculty, Electrical Electronics Engineering Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğurhan Kutbay.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutbay, U. Microcontroller-Based Clip Force Reading System for Brain Aneurysms. J. Med. Biol. Eng. 40, 748–756 (2020). https://doi.org/10.1007/s40846-020-00543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-020-00543-6

Keywords

Navigation