Skip to main content
Log in

Neurofeedback Training for Brain Functional Connectivity Improvement in Mild Cognitive Impairment

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Neurofeedback training (NFT) has been widely used to regulate brain activity. The present study aimed to examine the effectiveness of NFT in enhancing brain functional connectivity in patients with mild cognitive impairment (MCI).

Methods

Functional brain networks were constructed based on the coherence and phase synchronization index and verified the improvement effect by analyzing the characteristic parameters of brain connections between different electrode pairs for delta, theta, alpha, and beta rhythms.

Results

The coherence and phase synchronization index of each brainwave rhythm showed significant improvement after NFT, especially in the beta rhythm, with Pbc=0.003 < 0.05, Pbp=0.075 < 0.1. Functional brain networks demonstrated that the functional connectivity of the whole brain was enhanced, especially in frontal region and between the frontal region and the temporal, parietal, and occipital regions.

Conclusion

The results indicate that NFT can improve the brain functional connectivity of people with MCI. Coherence and phase synchronization analysis can objectively and accurately evaluate improvements in functional connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. Stam, C. J., Montez, T., Jones, B. F., Rombouts, S. A., van der Made, Y., Pijnenburg, Y. A., et al. (2005). Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease. Clinical Neurophysiology, 116(3), 708–715.

    Google Scholar 

  2. Liu, Y., Yu, C., Zhang, X., Liu, J., Duan, Y., Alexander-Bloch, A. F., et al. (2014). Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease. Cerebral Cortex, 24(6), 1422–1435.

    Google Scholar 

  3. Zhou, B., Yao, H., Wang, P., Zhang, Z., Zhan, Y., Ma, J., et al. (2015). Aberrant functional connectivity architecture in Alzheimer’s disease and Mild Cognitive Impairment: a whole-brain, data-driven analysis. Biomed Research International, 2015, 1–9.

    Google Scholar 

  4. Yu, E. Y., Wu, W. Z., Ding, Z. X., Tan, Y. F., Liao, Z. L., Qiu, Y. J., et al. (2013). Application of resting brain function in elderly people with different cognitive status. Zhejiang Medical Journal, 35(18), 1622–1624, 1647.

    Google Scholar 

  5. Adler, G., Brassen, S., & Jajcevic, A. (2003). EEG coherence in Alzheimer’s dementia. Journal of Neural Transmission, 110(9), 1051–1058.

    Google Scholar 

  6. Pijnenburg, Y. A., v d Made, Y., van Cappellen van Walsum, A. M., Knol, D. L., Scheltens, P., & Stam, C. J. (2004). EEG synchronization likelihood in mild cognitive impairment and Alzheimer's disease during a working memory task. Clinical neurophysiology, 115(6), 1332–1339.

    Google Scholar 

  7. Liu, Z. Y., & Qiu, S. J. (2010). Joint study of resting state functional connection and anatomical structure in human brain. International Journal of Medical Radiology, 33(5), 411–415.

    Google Scholar 

  8. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1–2), 56–78.

    Google Scholar 

  9. Horwitz, B. (2003). The elusive concept of brain connectivity. NeuroImage, 19(2), 466–470.

    Google Scholar 

  10. Handayani, N., Haryanto, F., Khotimah, S. N., Arif, I., & Taruno, W. P. (2018). Coherence and phase synchrony analyses of EEG signals in Mild Cognitive Impairment (MCI): A study of functional brain connectivity. Polish Journal of Medical Physics and Engineering, 24(1), 1–9.

    Google Scholar 

  11. Hata, M., Kazui, H., Tanaka, T., Ishii, R., Canuet, L., & Pascualmarqui, R. D. (2016). Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer’s disease-an eLORETA study. Clinical Neurophysiology, 127(1), 1269–1278.

    Google Scholar 

  12. Tóth, B., File, B., Boha, R., Kardos, Z., Hidasi, Z., Gaál, Z. A., et al. (2014). EEG network connectivity changes in mild cognitive impairment—Preliminary results. International Journal of Psychophysiology, 92(1), 1–7.

    Google Scholar 

  13. Higashima, M., Takeda, T., Kikuchi, M., Nagasawa, T., & Koshino, Y. (2006). Functional connectivity between hemispheres and schizophrenic symptoms: a longitudinal study of interhemispheric EEG coherence in patients with acute exacerbations of schizophrenia. Clinical EEG and Neuroscience, 37(1), 10–15.

    Google Scholar 

  14. Miskovic, V., & Keil, A. (2015). Reliability of event-related EEG functional connectivity during visual entrainment: magnitude squared coherence and phase synchrony estimates. Psychophysiology, 52(1), 81–89.

    Google Scholar 

  15. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., et al. (2007). Training-induced plasticity in older adults: Effects of training on hemispheric asymmetry. Neurobiology of Aging, 28(2), 272–283.

    Google Scholar 

  16. Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579–582.

    Google Scholar 

  17. Clark, V. P., & Parasuraman, R. (2014). Neuroenhancement: Enhancing brain and mind in health and in disease. NeuroImage, 85(3), 889–894.

    Google Scholar 

  18. Huo, L. J., Zheng, Z. W., Li, J., & Li, J. (2018). Brain plasticity of the elderly: evidence from cognitive training. Advances in Psychological Science, 26(5), 846–858.

    Google Scholar 

  19. Barban, F., Mancini, M., Cercignani, M., Adriano, F., Perri, R., Annicchiarico, R., et al. (2017). A pilot study on brain plasticity of functional connectivity modulated by cognitive training in mild Alzheimer’s Disease and Mild Cognitive Impairment. Brain Sciences, 7(5), 50.

    Google Scholar 

  20. Klados, M. A., Charis, S., Frantzidis, C. A., Evangelos, P., & Bamidis, P. D. (2016). Beta-band functional connectivity is reorganized in mild cognitive impairment after combined computerized physical and cognitive training. Frontiers in Neuroscience, 10, 55.

    Google Scholar 

  21. Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101.

    Google Scholar 

  22. Jirayucharoensak, S., Israsena, P., Pan-Ngum, S., & Hemrungrojn, S. (2014). A game-based neurofeedback training system for cognitive rehabilitation in the elderly. International Conference on Pervasive Computing Technologies for Healthcare, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 278–281.

  23. Becerra, J., Fernández, T., Roca-stappung, M., Díaz-Comas, L., Galán, L., Bosch, J., et al. (2012). Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. Journal of Alzheimer’s Disease, 28(2), 357–367.

    Google Scholar 

  24. Zoefel, B., René, J., Huster, & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427–1431.

    Google Scholar 

  25. Munivenkatappa, A., Rajeswaran, J., Indira Devi, B., Bennet, N., & Upadhyay, N. (2014). EEG Neurofeedback therapy: Can it attenuate brain changes in TBI? NeuroRehabilitation, 35(3), 481–484.

    Google Scholar 

  26. Datko, M. C. (2015). Functional and structural connectivity, and the effects of neurofeedback training, in imitation-related brain networks in Autism. UC San Diego. ProQuest ID: Datko_ucsd_0033D_15082. Merritt ID: ark:/13030/m5kq0zh6. Retrieved from https://escholarship.org/uc/item/5rw1x2ss.

  27. Hou, J. L., Zhan, X. H., Yan, G. L., Liu, Y., Li, W., Yang, L. P., et al. (2013). Progress in screening programs for Mild Cognitive Impairment. Chinese Journal of Gerontology, 33(10), 2464–2466.

    Google Scholar 

  28. Roth, M., Tym, E., Mountjoy, C. Q., Huppert, F. A., Hendrie, H., Verma, S., et al. (1986). Camdex. a standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. The British Journal of Psychiatry: the Journal of Mental Science, 149(6), 698–709.

    Google Scholar 

  29. Jaime, M., Mcmahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief report: reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(4), 1477–1489.

    Google Scholar 

  30. Zhao, L. N., Wang, B. Q., & Yao, D. Z. (2008). Research on phase synchronization analysis method of EEG based on signal processing. Journal of Biomedical Engineering, 25(2), 250–254.

    Google Scholar 

  31. Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., & Kounios, J. (2007). EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist, 21(1), 110–129.

    Google Scholar 

  32. Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., et al. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75–85.

    Google Scholar 

  33. Staufenbiel, S. M., Brouwer, A. M., Keizer, A. W., & Wouwe, N. C. V. (2013). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biological psychology, 95(1), 74–85.

    Google Scholar 

  34. Moretti, D. V., Frisoni, G. B., Pievani, M., Rosini, S., Geroldi, C., Binetti, G., et al. (2008). Cerebrovascular disease and hippocampal atrophy are differently linked to functional coupling of brain areas: an EEG coherence study in mci subjects. Journal of Alzheimer’s Disease, 14(3), 285–299.

    Google Scholar 

  35. Sun, J., Hong, X., & Tong, S. (2012). Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests. IEEE transactions on bio-medical engineering, 59(8), 2254–2263.

    Google Scholar 

  36. Sweeney-Reed, C. M., Riddell, P. M., Ellis, J. A., Freeman, J. E., & Nasuto, S. J. (2012). Neural correlates of true and false memory in mild cognitive impairment. PLoS ONE, 7(10), e48357.

    Google Scholar 

  37. Wang, R., Wang, J., Yu, H., Wei, X., Yang, C., & Deng, B. (2014). Decreased coherence and functional connectivity of electroencephalograph in Alzheimer’s disease. Chaos (Woodbury, N.Y.), 24(3), 033136.

    MathSciNet  MATH  Google Scholar 

  38. Williamson, P. C., Merskey, H., Morrison, S., Rabheru, K., Fox, H., Wands, K., et al. (1990). Quantitative electroencephalographic correlates of cognitive decline in normal elderly subjects. Archives of Neurology, 47(11), 1185–1188.

    Google Scholar 

  39. Han, S. D., Arfanakis, K., Fleischman, D. A., Leurgans, S. E., Tuminello, E. R., Edmonds, E. C., et al. (2012). Functional connectivity variations in mild cognitive impairment: associations with cognitive function. Journal of the International Neuropsychological Society: JINS, 18(1), 39–48.

    Google Scholar 

Download references

Acknowledgement

We would like to thank all subjects from the First Hospital of Hebei Medical University and the HanDan Central Hospital for their participation in this study.

Funding

This study was funded by Hebei Provincial Natural Science Foundation (F2014203244, F2019203515) and China Postdoctoral Science Foundation (2014M550582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, J., Li, XD. et al. Neurofeedback Training for Brain Functional Connectivity Improvement in Mild Cognitive Impairment. J. Med. Biol. Eng. 40, 484–495 (2020). https://doi.org/10.1007/s40846-020-00531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-020-00531-w

Keywords

Navigation