Goldsmith, H. L. (1986). The microcirculatory society Eugene M. Landis award lecture: The microrheology of human blood. Microvascular Research,31(2), 121–142.
Google Scholar
Fung, Y. C. (1997). Biomechanics: Circulation (2nd ed.). New York: Springer.
Google Scholar
Popel, A. C. (2005). Microcirculation and hemorheology. Annual Review of Fluid Mechanics,37, 43–69.
MathSciNet
MATH
Google Scholar
Chien, S., Tvetenstrand, C. D., Epstein, M. A., & Schmid-Schonbein, G. W. (1985). Model studies on distributions of blood cells at microvascular bifurcations. American Journal of Physiology-Heart and Circulatory Physiology,248(4), 568–576.
Google Scholar
Fenton, B. M., Carr, R. T., & Cokelet, G. R. (1985). Nonuniform red cell distribution in 20 to 100 μm bifurcations. Microvascular Research,29(1), 103–126.
Google Scholar
Ditchfield, R., & Olbricht, W. L. (1996). Effects of particle concentration on the partitioning of suspensions at small divergent bifurcations. Journal of Biomechanical Engineering,118(3), 287–294.
Google Scholar
Roberts, B. W., & Olbricht, W. L. (2003). Flow-induced particulate separations. AIChE Journal,49, 2842–2849.
Google Scholar
Roberts, B. W., & Olbricht, W. L. (2006). The distribution of freely suspended particles at microfluidic bifurcations. AIChE Journal,52(1), 199–206.
Google Scholar
Doyeux, V., Podgorski, T., Peponas, S., Ismail, M., & Coupier, G. (2011). Spheres in the vicinity of a bifurcation: Elucidating the Zweifach-Fung effect. Journal of Fluid Mechanics,674, 359–388.
MathSciNet
MATH
Google Scholar
Schmid-Schonbein, G. W., Skalak, R., Usami, S., & Chien, S. (1980). Cell distribution in capillary networks. Microvascular Research,19(1), 18–44.
Google Scholar
Mchedlishvili, G., & Varazashvili, M. (1982). Flow conditions of red cells and plasma in microvascular bifurcations. Biorheology,19(5), 613–620.
Google Scholar
Carr, R. T., & Wickham, L. L. (1991). Influence of vessel diameter on red cell distribution at microvascular bifurcations. Microvascular Research,41(2), 184–196.
Google Scholar
Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at microvascular bifurcations. Microvascular Research,38(1), 81–101.
Google Scholar
Pries, A. R., Secomb, T. W., Gaehtgens, P., & Gross, J. F. (1990). Blood flow in microvascular networks. Experiments and simulation. Circulation research,67(4), 826–834.
Google Scholar
Ishikawa, T., Fujiwara, H., Matsuki, N., Yoshimoto, T., Imai, Y., Ueno, H., et al. (2011). Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomedical Microdevices,13, 159–167.
Google Scholar
Leble, V., Lima, R., Dias, R., Fernandes, C., Ishikawa, T., Imai, Y., et al. (2011). Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics,5, 044120.
Google Scholar
Sherwood, J. M., Kaliviotis, E., Dusting, J., & Balabani, S. (2012). The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. Biomicrofluidics,6(2), 024119.
Google Scholar
Sherwood, J. M., Kaliviotis, E., Dusting, J., & Balabani, S. (2014). Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel. Biomechanics and Modeling in Mechanobiology,13(2), 259–273.
Google Scholar
Sherwood, J. M., Holmes, D., Kaliviotis, E., & Balabani, S. (2014). Spatial distributions of red blood cells significantly alter local hemodynamics. PLoS ONE,9, e100473.
Google Scholar
Kaliviotis, E., Sherwood, J. M., & Balabani, S. (2017). Partitioning of red blood cell aggregates in bifurcating microscale flows. Scientific Reports,7, 44563.
Google Scholar
Kaliviotis, E., Sherwood, J. M., & Balabani, S. (2018). Local viscosity distribution in bifurcating microfluidic blood flows. Physics of Fluids,30(3), 030706.
Google Scholar
Clavica, F., Homsy, A., Jeandupeux, L., & Obrist, D. (2016). Red blood cell phase separation in symmetric and asymmetric microchannel networks: Effect of capillary dilation and inflow velocity. Scientific Reports,6, 36763.
Google Scholar
Roman, S., Merlo, A., Duru, P., Risso, F., & Lorthois, S. (2016). Going beyond 20 μ m-sized channels for studying red blood cell phase separation in microfluidic bifurcations. Biomicrofluidics,10(3), 034103.
Google Scholar
Shen, Z., Coupier, G., Kaoui, B., Polack, B., Harting, J., Misbah, C., et al. (2016). Inversion of hematocrit partition at microfluidic bifurcations. Microvascular Research,105, 40–46.
Google Scholar
Kodama, Y., Aoki, H., Yamagata, Y., & Tsubota, K. (2019). In vitro analysis of blood flow in a microvascular network with realistic geometry. Journal of Biomechanics,88, 88–94.
Google Scholar
Li, X., Popel, A. S., & Karniadakis, G. E. (2012). Blood–plasma separation in y-shaped bifurcating microfluidic channels: A dissipative particle dynamics simulation study. Physical Biology,9(2), 026010.
Google Scholar
Hyakutake, T., & Nagai, S. (2015). Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Microvascular Research,97, 115–123.
Google Scholar
Lykov, K., Li, X., Lei, H., Pivkin, I. V., & Karniadakis, G. E. (2015). Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees. PLoS Computational Biology,11(8), e1004410.
Google Scholar
Wang, Z., Sui, Y., Salsac, A. V., Barthès-Biesel, D., & Wang, W. (2016). Motion of a spherical capsule in branched tube flow with finite inertia. Journal of Fluid Mechanics,806, 603–626.
MathSciNet
MATH
Google Scholar
Balogh, P., & Bagchi, P. (2017). A computational approach to modeling cellular-scale blood flow in complex geometry. Journal of Computational Physics,334, 280–307.
MathSciNet
Google Scholar
Balogh, P., & Bagchi, P. (2017). Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks. Biophysical Journal,113, 2815–2826.
Google Scholar
Balogh, P., & Bagchi, P. (2018). Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks. Physics of Fluids,30(5), 051902.
Google Scholar
Ye, T., Peng, L., & Li, Y. (2018). Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels. Journal of Applied Physics,123(6), 064701.
Google Scholar
White, F. M. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill Inc.
Google Scholar
McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters,61(20), 2332.
Google Scholar
Succi, S. (2001). The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford: Oxford University Press.
MATH
Google Scholar
Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics,25(3), 220–252.
MathSciNet
MATH
Google Scholar
Zhang, J., Johnson, P. C., & Popel, A. S. (2007). An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Physical Biology,4, 285–295.
Google Scholar
Crowl, L. M., & Fogelson, A. L. (2010). Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. International Journal for Numerical Methods in Biomedical Engineering,26(3–4), 471–487.
MathSciNet
MATH
Google Scholar
Inamuro, T. (2012). Lattice Boltzmann methods for moving boundary flows. Fluid Dynamics Research,44(2), 024001.
MathSciNet
MATH
Google Scholar
Guo, Z., Zheng, C., & Shi, B. (2002). Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E,65(4), 046308.
MATH
Google Scholar
Evans, E. A., & Fung, Y. C. (1972). Improved measurements of the erythrocyte geometry. Microvascular Research,4, 335–347.
Google Scholar
Krüger, T. (2012). Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Berlin: Springer.
Google Scholar
Oulaid, O., Saad, A. K. W., Aires, P. S., & Zhang, J. (2016). Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows. Computer Methods in Biomechanics and Biomedical Engineering,19(6), 648–662.
Google Scholar
Waugh, R. E., & Hochmuth, R. M. (2006). Chapter 60: Mechanics and deformability of hematocytes. In J. D. Bronzino (Ed.), Biomedical engineering fundamentals (3rd ed.). Boca Raton, FL: CRC Press.
Google Scholar