Skip to main content
Log in

Influence of Vitamin D Status and Mechanical Loading on the Morphometric and Mechanical Properties of the Mouse Tibia

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

It is well known that vitamin D and mechanical loading play important roles in bone growth and development. However, the combined effect of the maternal vitamin D status and mechanical loading on the bone quality of growing and mature bones is still unclear. The aim of this study was to investigate the influence of the antenatal vitamin D status and mechanical loading on bone morphometric and mechanical properties in juvenile and adult bones. C57BL/6J mice were used to generate vitamin D-replete and vitamin D-depleted dams. The left tibiae of 8-week-old and 16-week-old offspring were mechanically loaded in vivo for two weeks. Both tibiae were dissected and scanned using a μCT imaging system. It was found that in the bones of 10-week-old juvenile offspring, the antenatal vitamin D-replete group significantly increased trabecular bone volume fraction (Tb.BV/TV), trabecular thickness (Tb.Th), cortical thickness (Ct.Th), bone stiffness and failure load; significantly decreased trabecular separation (Tb.Sp) and cortical marrow area (Ct.MA) only in loaded tibiae; and markedly increased Tb.Sp and Ct.MA only in non-loaded tibiae. In the bones of the 18-week-old adult offspring, the antenatal vitamin D status had a minimal effect on the bone morphometric and mechanical parameters. These data imply that antenatal vitamin D repletion results in increased responses to mechanical loading only in the juvenile state, emphasizing the importance of a sufficient vitamin D supply during pregnancy and sufficient physical activities during the juvenile period to increase bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnell, O., & Kanis, J. (2005). Epidemiology of osteoporotic fractures. Osteoporos Int, 16(Suppl 2), S3–S7.

    Article  Google Scholar 

  2. Kanis, J. A., & Johnell, O. (2005). Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int, 16(3), 229–238.

    Article  Google Scholar 

  3. Levchuk, A., Zwahlen, A., Weigt, C., Lambers, F. M., Badilatti, S. D., Schulte, F. A., et al. (2014). The Clinical Biomechanics Award 2012—presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment. Clin Biomech, 29(4), 355–362.

    Article  Google Scholar 

  4. Birkhold, A. I., Razi, H., Duda, G. N., Weinkamer, R., Checa, S., & Willie, B. M. (2014). Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone, 66, 15–25.

    Article  Google Scholar 

  5. Ioannou, C., Javaid, M. K., Mahon, P., Yaqub, M. K., Harvey, N. C., Godfrey, K. M., et al. (2012). The effect of maternal vitamin D concentration on fetal bone. J Clin Endocrinol Metab, 97(11), E2070–E2077. https://doi.org/10.1210/jc.2012-2538.

    Article  Google Scholar 

  6. Viljakainen, H. T., Saarnio, E., Hytinantti, T., Miettinen, M., Surcel, H., Mäkitie, O., et al. (2010). Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab, 95(4), 1749–1757.

    Article  Google Scholar 

  7. Zhu, K., Whitehouse, A. J., Hart, P. H., Kusel, M., Mountain, J., Lye, S., et al. (2014). Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res, 29(5), 1088–1095.

    Article  Google Scholar 

  8. Bouxsein, M. L., Myers, K. S., Shultz, K. L., Donahue, L. R., Rosen, C. J., & Beamer, W. G. (2005). Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res, 20(7), 1085–1092. https://doi.org/10.1359/JBMR.050307.

    Article  Google Scholar 

  9. Boyd, S. K., Davison, P., Müller, R., & Gasser, J. A. (2006). Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone, 39(4), 854–862.

    Article  Google Scholar 

  10. Klinck, R. J., Campbell, G. M., & Boyd, S. K. (2008). Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys, 30(7), 888–895.

    Article  Google Scholar 

  11. De Souza, R. L., Matsuura, M., Eckstein, F., Rawlinson, S. C., Lanyon, L. E., & Pitsillides, A. A. (2005). Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone, 37(6), 810–818.

    Article  Google Scholar 

  12. Willie, B. M., Birkhold, A. I., Razi, H., Thiele, T., Aido, M., Kruck, B., et al. (2013). Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57BL/6 mice coincides with a reduction in deformation to load. Bone, 55(2), 335–346.

    Article  Google Scholar 

  13. Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2016). Development of a protocol to quantify local bone adaptation over space and time: quantification of reproducibility. J Biomech, 49(10), 2095–2099.

    Article  Google Scholar 

  14. Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2015). Evaluation of in vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach. Med Eng Phys, 37(11), 1091–1097.

    Article  Google Scholar 

  15. Turkowski, K. (1990). Filters for common resampling tasks. In A. S. Glassner (Ed.), Graphics gems (Vol. 1, pp. 147–165). Cambridge: Academic Press.

    Chapter  Google Scholar 

  16. Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2017). Longitudinal effects of parathyroid hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J Mech Behav Biomed Mater, 75, 244–251.

    Article  Google Scholar 

  17. Oliviero, S., Lu, Y., Viceconti, M., & Dall’Ara, E. (2017). Effect of integration time on the morphometric, densitometric and mechanical properties of the mouse tibia. J Biomech, 65, 203–211.

    Article  Google Scholar 

  18. Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., & Müller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 25(7), 1468–1486.

    Article  Google Scholar 

  19. Klinck, J., & Boyd, S. K. (2008). The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif Tissue Int, 83(1), 70–79.

    Article  Google Scholar 

  20. Chen, Y., Dall Ara, E., Sales, E., Manda, K., Wallace, R., Pankaj, P., et al. (2017). Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater, 65, 644–651.

    Article  Google Scholar 

  21. Knowles, N. K., Reeves, J. M., & Ferreira, L. M. (2016). Quantitative computed tomography (QCT) derived bone mineral density (BMD) in finite element studies: a review of the literature. J Exp Orthop, 3(1), 36. https://doi.org/10.1186/s40634-016-0072-2.

    Article  Google Scholar 

  22. Easley, S. K., Jekir, M. G., Burghardt, A. J., Li, M., & Keaveny, T. M. (2010). Contribution of the intra-specimen variations in tissue mineralization to PTH- and raloxifene-induced changes in stiffness of rat vertebrae. Bone, 46(4), 1162–1169. https://doi.org/10.1016/j.bone.2009.12.009.

    Article  Google Scholar 

  23. Yang, H., Butz, K. D., Duffy, D., Niebur, G. L., Nauman, E. A., & Main, R. P. (2014). Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Bone, 66, 131–139.

    Article  Google Scholar 

  24. Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., & Viceconti, M. (2008). Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech, 23(2), 135–146.

    Article  Google Scholar 

  25. Pistoia, W., van Rietbergen, B., Lochmüller, E. M., Lill, C. A., Eckstein, F., & Rüegsegger, P. (2002). Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone, 30(6), 842–848.

    Article  Google Scholar 

  26. Qasim, M., Farinella, G., Zhang, J., Li, X., Yang, L., Eastell, R., et al. (2016). Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int, 27(9), 2815–2822.

    Article  Google Scholar 

  27. Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech, 37(1), 27–35.

    Article  Google Scholar 

  28. Birkhold, A. I., Razi, H., Duda, G. N., Weinkamer, R., Checa, S., & Willie, B. M. (2014). The influence of age on adaptive bone formation and bone resorption. Biomaterials, 35(34), 9290–9301.

    Article  Google Scholar 

  29. Holguin, N., Brodt, M. D., Sanchez, M. E., & Silva, M. J. (2014). Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6. Bone, 65, 83–91.

    Article  Google Scholar 

  30. Lynch, M. E., Main, R. P., Xu, Q., Schmicker, T. L., Schaffler, M. B., Wright, T. M., et al. (2011). Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone, 49(3), 439–446.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (11702057, 11772086), the Chinese Fundamental Research Funds for the Central Universities (DUT18LK19) and the Open Fund from the State Key Laboratory of Structural Analysis for Industrial Equipment (GZ1611), Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Wei Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or personal relationships with other persons or organizations that might inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YT., Cui, ZT., Zhu, HX. et al. Influence of Vitamin D Status and Mechanical Loading on the Morphometric and Mechanical Properties of the Mouse Tibia. J. Med. Biol. Eng. 39, 523–531 (2019). https://doi.org/10.1007/s40846-018-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0433-7

Keywords

Navigation