Development of a Dual-Energy Computed Tomography-Based Segmentation Method for Collateral Ligaments: A Porcine Knee Model

  • Yeh-Ming Du
  • Qing-Fang Yang
  • Wan-Ting Shen
  • Hsuan-Ming Huang
Original Article
  • 6 Downloads

Abstract

The clinical value of dual-energy computed tomography (DECT) has gradually been recognized in many applications. In particular, DECT offers a new imaging method to improve the visualization of ligaments and tendons. However, limitations such as two-dimensional display and manual window adjustment hamper the evaluation of knee ligament injuries. In this study, we proposed a method to segment collateral ligaments from DECT images automatically. Based on various segmentation techniques, collateral ligaments can be visualized using the three-dimensional (3D) volume-rendering technique. To validate our methodology, we used a porcine knee model and focused on the detection of the medial collateral ligament (MCL) and lateral collateral ligament (LCL). Twenty porcine hind legs were scanned using DECT after specimens underwent surgery to cut either the MCL or the LCL. Using the proposed method, either a complete or a partial LCL rupture could be detected clearly, and a complete MCL rupture could be shown clearly. However, some cases might present some difficulty in identifying a partial MCL rupture since the MCL is a thin ligament. The proposed method can be used to automatically segment the main ligaments of the knee. In addition, the 3D volume rendering image makes DECT a valuable tool for the diagnosis of knee ligament injuries.

Keywords

Dual-energy CT Knee Ligament X-ray computed tomography 

Notes

Acknowledgements

This work was supported by the Taiwan Ministry of Science Technology under grant numbers MOST 104-2218-E-182-002 and the Research Fund of Chang Gung Memorial Hospital, Taiwan under Grant Numbers CIRPD3E0122.

References

  1. 1.
    Flohr, T. G., McCollough, C. H., Bruder, H., Petersilka, M., Gruber, K., Süss, C., et al. (2006). First performance evaluation of a dual-source CT (DSCT) system. European Radiology, 16(2), 256–268.CrossRefGoogle Scholar
  2. 2.
    Johnson, T. R. C., Krauss, B., Sedlmair, M., Grasruck, M., Bruder, H., Morhard, D., et al. (2007). Material differentiation by dual energy CT: initial experience. European Radiology, 17(6), 1510–1517.CrossRefGoogle Scholar
  3. 3.
    Petersilka, M., Bruder, H., Krauss, B., Stierstorfer, K., & Flohr, T. G. (2008). Technical principles of dual source CT. European Journal of Radiology, 68(3), 362–368.CrossRefGoogle Scholar
  4. 4.
    Karçaaltıncaba, M., & Aktaş, A. (2011). Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagnostic and interventional radiology, 17(3), 181–194.Google Scholar
  5. 5.
    Kraśnicki, T., Podgórski, P., Guziński, M., Czarnecka, A., Tupikowski, K., Garcarek, J., et al. (2012). Novel clinical applications of dual energy computed tomography. Advances in Clinical and Experimental Medicine, 21(6), 831–841.Google Scholar
  6. 6.
    Nicolaou, S., Liang, T., Murphy, D. T., Korzan, J. R., Ouellette, H., & Munk, P. (2012). Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. American Journal of Roentgenology, 199(5 Suppl), S78–S86.CrossRefGoogle Scholar
  7. 7.
    VandeBerg, B. C., Lecouvet, F. E., Poilvache, P., Dubuc, J. E., Bedat, B., Maldague, B., et al. (2000). Dual-detector spiral CT arthrography of the knee: accuracy for detection of meniscal abnormalities and unstable meniscal tears. Radiology, 216(3), 851–857.CrossRefGoogle Scholar
  8. 8.
    VandeBerg, B. C., Lecouvet, F. E., Poilvache, P., Maldague, B., & Malghem, J. (2002). Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee. European Radiology, 12(7), 1800–1810.CrossRefGoogle Scholar
  9. 9.
    VandeBerg, B. C., Lecouvet, F. E., Poilvache, P., Dubuc, J.-E., Maldague, B., & Malghem, J. (2002). Anterior cruciate ligament tears and associated meniscal lesions: assessment at dual-detector spiral CT arthrography. Radiology, 223(2), 403–409.CrossRefGoogle Scholar
  10. 10.
    Sun, C., Miao, F., Wang, X.-M., Wang, T., Ma, R., Wang, D.-P., et al. (2008). An initial qualitative study of dual-energy CT in the knee ligaments. Surgical and Radiologic Anatomy, 30(5), 443–447.CrossRefGoogle Scholar
  11. 11.
    Fickert, S., Niks, M., Dinter, D. J., Hammer, M., Weckbach, S., Schoenberg, S. O., et al. (2013). Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiology, 42(3), 411–417.CrossRefGoogle Scholar
  12. 12.
    Peltola, E. K., & Koskinen, S. K. (2015). Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skeletal Radiology, 44(9), 1295–1301.CrossRefGoogle Scholar
  13. 13.
    Mink, J. H., Levy, T., & Crues, J. V. (1988). Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation. Radiology, 167(3), 769–774.CrossRefGoogle Scholar
  14. 14.
    Ha, T. P., Li, K. C., Beaulieu, C. F., Bergman, G., Ch’en, I. Y., Eller, D. J., et al. (1998). Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. American Journal of Roentgenology, 170(5), 1215–1219.CrossRefGoogle Scholar
  15. 15.
    VandeBerg, B. C., Lecouvet, F. E., Maldague, B., & Malghem, J. (2004). MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis. European Radiology, 14(2), 208–214.CrossRefGoogle Scholar
  16. 16.
    Lohan, D. G., Motamedi, K., Chow, K., Habibi, R., Panknin, C., Ruehm, S. G., et al. (2008). Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality? American Journal of Roentgenology, 191(5), 1386–1390.CrossRefGoogle Scholar
  17. 17.
    McLachlan, G., & Peel, D. (2004). Finite mixture models. Hoboken: Wiley.MATHGoogle Scholar
  18. 18.
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.CrossRefGoogle Scholar
  19. 19.
    Paley, D. (2002). Principles of deformity correction. Berlin: Springer.CrossRefGoogle Scholar
  20. 20.
    Yu, L., Christner, J. A., Leng, S., Wang, J., Fletcher, J. G., & McCollough, C. H. (2011). Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Medical Physics, 38(12), 6371–6379.CrossRefGoogle Scholar
  21. 21.
    Pomerantz, S. R., Kamalian, S., Zhang, D., Gupta, R., Rapalino, O., Sahani, D. V., et al. (2013). Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65–75 keV maximizes image quality compared with conventional polychromatic CT. Radiology, 266(1), 318–325.CrossRefGoogle Scholar
  22. 22.
    Saltybaeva, N., Jafari, M. E., Hupfer, M., & Kalender, W. A. (2014). Estimates of effective dose for CT scans of the lower extremities. Radiology, 273(1), 153–159.CrossRefGoogle Scholar
  23. 23.
    Biswas, D., Bible, J. E., Bohan, M., Simpson, A. K., Whang, P. G., & Grauer, J. N. (2009). Radiation exposure from musculoskeletal computerized tomographic scans. The Journal of bone and joint surgery., 91(8), 1882–1889.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  • Yeh-Ming Du
    • 1
    • 2
  • Qing-Fang Yang
    • 3
  • Wan-Ting Shen
    • 1
    • 2
  • Hsuan-Ming Huang
    • 4
  1. 1.Lotung Poh-Ai HospitalLuodongTaiwan
  2. 2.Community Health ServicesTungs’ Taichung MetroHarbor HospitalTaichung CityTaiwan
  3. 3.Medical Physics Research Center, Institute for Radiological ResearchChang Gung University and Chang Gung Memorial HospitalTaoyuan CityTaiwan
  4. 4.Institute of Medical Device and Imaging, College of MedicineNational Taiwan UniversityTaipei CityTaiwan

Personalised recommendations