Skip to main content
Log in

Estimation and Reduction of Resonant Mie Scattering (RMieS) From IR Spectra of Biological Cells by Optimization Algorithm

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Infrared spectroscopy has attracted considerable attention at many fields of study such as pharmaceutical sciences. How much scattering we have would be based on the similarities range of mid-infrared wavelength and uneven biological samples like cells and tissues. In such cases, the part of the input irradiance wave which does not reach the detector could erroneously be interpreted as absorption intensity. So it shows itself as a broad sinusoidal oscillation in the baseline, and even it would have frequency shifts in the absorbance bands. Based on the studies conducted in this area, the main cause of spectral distortion is the Resonant Mie Scattering. In other words, the real refractive index spectrum plays a prominent role in high scattering. However, pure absorptive components extraction suffers from requiring an appropriate reference spectrum for initialization. It must not contain any scattering contributions which unfortunately cannot be always happened. In this article, a cost function under a clear constraint is presented with regard to the biological data and the scattering structure to spectrum correction. The results show that the creation of eligible cost function using optimization algorithms could have the desired accuracy for biological spectra even without selecting appropriate reference spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2008). Introduction to spectroscopy. Belmont, CA: Cengage Learning.

    Google Scholar 

  2. Ostrovsky, E., Zelig, U., Gusakova, I., Ariad, S., Mordechai, S., Nisky, I., et al. (2013). Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood. IEEE Transactions on Biomedical Engineering, 60(2), 343–353.

    Article  Google Scholar 

  3. Bassan, P., Kohler, A., Martens, H., Lee, J., Byrne, H. J., Dumas, P., et al. (2010). Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst, 135(2), 268–277.

    Article  Google Scholar 

  4. Bassan, P., Kohler, A., Martens, H., Lee, J., Jackson, E., Lockyer, N., et al. (2010). RMieS-EMSC correction for infrared spectra of biological cells: Extension using full Mie theory and GPU computing. Journal of Biophotonics, 3(8–9), 609–620.

    Article  Google Scholar 

  5. Diem, M., Miljković, M., Bird, B., Chernenko, T., Schubert, J., Marcsisin, E., et al. (2012). Applications of infrared and Raman microspectroscopy of cells and tissue in medical diagnostics: Present status and future promises. Journal of Spectroscopy, 27(5–6), 463–496.

    Article  Google Scholar 

  6. Mohlenhoff, B., Romeo, M., Diem, M., & Wood, B. R. (2005). Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. Biophysical Journal, 88(5), 3635–3640.

    Article  Google Scholar 

  7. Bassan, P., Byrne, H. J., Lee, J., Bonnier, F., Clarke, C., Dumas, P., et al. (2009). Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst, 134(6), 1171–1175.

    Article  Google Scholar 

  8. Dazzi, A., Deniset-Besseau, A., & Lasch, P. (2013). Minimising contributions from scattering in infrared spectra by means of an integrating sphere. Analyst, 138(14), 4191–4201.

    Article  Google Scholar 

  9. Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., et al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9(8), 1771.

    Article  Google Scholar 

  10. Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3), 377–445.

    Article  MATH  Google Scholar 

  11. Hulst, H. C., & van de Hulst, H. C. (1957). Light scattering by small particles. North Chelmsford: Courier Corporation.

    MATH  Google Scholar 

  12. Romeo, M., Mohlenhoff, B., & Diem, M. (2006). Infrared micro-spectroscopy of human cells: Causes for the spectral variance of oral mucosa (buccal) cells. Vibrational Spectroscopy, 42(1), 9–14.

    Article  Google Scholar 

  13. Bassan, P., Byrne, H. J., Bonnier, F., Lee, J., Dumas, P., & Gardner, P. (2009). Resonant Mie scattering in infrared spectroscopy of biological materials–understanding the ‘dispersion artefact’. Analyst, 134(8), 1586–1593.

    Article  Google Scholar 

  14. Bassan, P. (2011). Light scattering during infrared spectroscopic measurements of biomedical samples (Doctoral dissertation, University of Manchester).

  15. Ogilvie, J. F., & Fee, G. J. (2013). Equivalence of Kramers Kronig and Fourier transforms to convert between optical dispersion and optical spectra. Mathch-Communications in Mathematical and in Computer Chemistry, 69(2), 249–262.

    MathSciNet  MATH  Google Scholar 

  16. Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404.

    Article  Google Scholar 

  17. Kohler, A., Sule-Suso, J., Sockalingum, G. D., Tobin, M., Bahrami, F., Yang, Y., et al. (2008). Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction. Applied Spectroscopy, 62(3), 259–266.

    Article  Google Scholar 

  18. Duarte, L. T., Moussaoui, S., & Jutten, C. (2014). Source separation in chemical analysis: Recent achievements and perspectives. IEEE Signal Processing Magazine, 31(3), 135–146.

    Article  Google Scholar 

  19. Whittaker, K. A., Keaveney, J., Hughes, I. G., & Adams, C. S. (2015). Hilbert transform: Applications to atomic spectra. Physical Review A, 91(3), 032513.

    Article  MathSciNet  Google Scholar 

  20. Bertie, J. E., & Zhang, S. L. (1992). Infrared intensities of liquids. IX. The Kramers-Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms. Canadian Journal of Chemistry, 70(2), 520–531.

    Article  Google Scholar 

  21. Diem, M. (2015). Modern vibrational spectroscopy and micro-spectroscopy: Theory, instrumentation and biomedical applications. New York: Wiley.

    Book  Google Scholar 

  22. Konevskikh, T., Lukacs, R., Blümel, R., Ponossov, A., & Kohler, A. (2016). Mie scatter corrections in single cell infrared microspectroscopy. Faraday Discussions, 187, 235–257.

    Article  Google Scholar 

  23. Bassan, P., Sachdeva, A., Kohler, A., Hughes, C., Henderson, A., Boyle, J., et al. (2012). FTIR microscopy of biological cells and tissue: Data analysis using resonant Mie scattering (RMieS) EMSC algorithm. Analyst, 137(6), 1370–1377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Torkamani Azar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegari Banadkoki, S., Torkamani Azar, F. & Hosseini Shirazi, F. Estimation and Reduction of Resonant Mie Scattering (RMieS) From IR Spectra of Biological Cells by Optimization Algorithm. J. Med. Biol. Eng. 39, 431–441 (2019). https://doi.org/10.1007/s40846-018-0423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0423-9

Keywords

Navigation