Critical Review of Uroflowmetry Methods

Abstract

Greater than 60% of men (age 40+) are affected by lower urinary tract symptoms, furthermore, NIH has estimated that at least 10 million US men and women suffer from urinary incontinence. However, it is thought that these statistics grossly underestimate the actual prevalence of these types of illnesses. This can be partially attributed to inhibition of a patients’ voiding process if someone is watching them, which often leads to inaccurate results as well as sometimes avoidance of medical help altogether. There are a number of different urodynamic tests used to assess how well the bladder and urethra store and release the urine. These tests include measuring the urine flow rate, volume, pressure, leakage, frequency, urge to urinate, urine stream, pain level while urinating, and urinary tract infections. This paper discusses multiple Urodynamic methods including non-invasive, invasive, homebased, and identifies the gaps available in current technology. In addition, the paper presents the Guidelines for Urodynamics practices developed by the International Incontinence Society. Some urodynamic tests are simple where physicians listen to a patient while urinating to understand the pattern of urination. Other techniques involve inserting a catheter into the urinary tract to measure the internal pressure of the urethra and the volume of the urine. Current methods do not enable physicians to observe the urine stream because patients need to urinate in a private setup. This results in the loss of valuable diagnostic information present in observing the shape of the stream. A new system recently designed overcomes this shortcoming, however, it requires design modifications before it can be used for women. Non-invasive methods utilizing sensors used in clinical setup provide a good insight on the urinary track. However, invasive techniques are needed to identify causes of complicated problems in urinary track.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Drinnan, M., & Griffiths, C. (2014). The physiological measurement handbook. New York, NY: CRC Press.

    Google Scholar 

  2. 2.

    Jørgensen, J. B., Jensen, K. E., Klarskov, P., Bernstein, I., Abel, I., & Mogensen, P. (1990). Intra-and inter-observer variations in classification of urinary flow curve patterns. Neurourology and Urodynamics, 9(5), 535–539.

    Article  Google Scholar 

  3. 3.

    Jørgensen, J. B., & Jensen, K. M.-E. (1996). Uroflowmetry. Urologic Clinics of North America, 23(2), 237–242.

    Article  Google Scholar 

  4. 4.

    Wang, F., Zhang, X., Shokoueinejad, M., Iskandar, B. J., Medow, J. E., & Webster, J. G. (2017). A novel intracranial pressure readout circuit for passive wireless LC sensor. IEEE Transactions on Biomedical Circuits and Systems, 11(5), 1123–1132. https://doi.org/10.1109/TBCAS.2017.2731370.

    Article  Google Scholar 

  5. 5.

    Schäfer, W., Abrams, P., Liao, L., Mattiasson, A., Pesce, F., Spangberg, A., et al. (2002). Good urodynamic practices: Uroflowmetry, filling cystometry, and pressure-flow studies. Neurourology and Urodynamics, 21(3), 261–274.

    Article  Google Scholar 

  6. 6.

    Schäfer, W., Rübben, H., Noppeney, R., & Deutz, F.-J. (1989). Obstructed and unobstructed prostatic obstruction. World Journal of Urology, 6(4), 198–203.

    Article  Google Scholar 

  7. 7.

    Abrams, P. (1997). Urodynamic techniques—cystometry. Urodynamics (pp. 17–117). London: Springer.

    Book  Google Scholar 

  8. 8.

    Urbonavičius, B., & Kaškonas, P. (2016). Urodynamic measurement techniques: A review. Measurement, 90, 64–73.

    Article  Google Scholar 

  9. 9.

    Chou, E. C.-L., Yang, P.-Y., Hsueh, W.-H., Chang, C.-H., & Meng, N.-H. (2011). Urinating in the standing position: A feasible alternative for elderly women with knee osteoarthritis. The Journal of urology, 186(3), 949–953.

    Article  Google Scholar 

  10. 10.

    Møller, C. F., & Hald, T. (1972). Clinical urodynamics: Methods and results. Scandinavian Journal of Urology and Nephrology, 6(sup15), 143–155. https://doi.org/10.3109/00365597209133658.

    Article  Google Scholar 

  11. 11.

    Amjadi, M., Hajebrahimi, S., & Soleimanzadeh, F. (2011). The effect of voiding position on uroflowmetric parameters in healthy young men. UroToday International Journal, 4(3), 35.

    Article  Google Scholar 

  12. 12.

    Riehmann, M., Bayer, W. H., Drinka, P. J., Schultz, S., Krause, P., Rhodes, P. R., et al. (1998). Position-related changes in voiding dynamics in men. Urology, 52(4), 625–630.

    Article  Google Scholar 

  13. 13.

    Gomes, C. M., Arap, S., & Trigo-Rocha, F. E. (2004). Voiding dysfunction and urodynamic abnormalities in elderly patients. Revista do Hospital das Clinicas, 59(4), 206–215.

    Article  Google Scholar 

  14. 14.

    Diagnostic procedures in the evaluation of female urinary incontinence and voiding dysfunction (2004). Retrieved from https://www.glowm.com/resources/glowm/cd/pages/v1/v1c079.html.

  15. 15.

    Ünsal, A., & Çimentepe, E. (2004). Voiding position does not affect uroflowmetric parameters and post-void residual urine volume in healthy volunteers. Scandinavian Journal of Urology and Nephrology, 38(6), 469–471.

    Article  Google Scholar 

  16. 16.

    Ryall, R. L., & Marshall, V. R. (1983). Measurement of urinary flow rate. Urology, 22(5), 556–564.

    Article  Google Scholar 

  17. 17.

    Ballenger, E. G., & Mcdonald, H. P. (1932). Voiding distance decrease an important early symptom of prostatic obstruction. Southern Medical Journal, 25(8), 863–864.

    Article  Google Scholar 

  18. 18.

    Susset, J., Picker, P., Kretz, M., & Jorest, R. (1973). Critical evaluation of uroflowmeters and analysis of normal curves. The Journal of urology, 109(5), 874–878.

    Article  Google Scholar 

  19. 19.

    Cardus, D., Quesada, E., & Scott, F. (1963). Use of an electromagnetic flowmeter for urine flow measurements. Journal of Applied Physiology, 18(4), 845–847.

    Article  Google Scholar 

  20. 20.

    Von Garrelts, B. (1957). Analysis of micturition; a new method of recording the voiding of the bladder. Acta Chirurgica Scandinavica, 112(3–4), 326–340.

    Google Scholar 

  21. 21.

    Dejhan, R. B. K., & Yimman, S. Uroflowmetry recording design. In TENCON 2014-2014 IEEE Region 10 Conference, 2014 (pp. 1–5). IEEE.

  22. 22.

    Otero, A., Akinfiev, T., Fernandez, R., & Palacios, F. A device for automatic measurement of the critical, care patient’s urine output. In Intelligent Signal Processing, 2009. WISP 2009. IEEE International Symposium on, 2009 (pp. 169–173). IEEE.

  23. 23.

    Carter, G. L., & Weeks, V. B. (1985). Toilet mounted urine flow meter. Google Patents.

  24. 24.

    Suryawanshi, A., & Joshi, A. A method to examine functioning and dysfunctioning of lower urinary tract. In 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 2012 (pp. 1–6). IEEE.

  25. 25.

    Wurster, H. (1977). Apparatus for measuring rates of urine flow electrically. Google Patents.

  26. 26.

    Terai, A., Ueda, N., Utsunomiya, N., Kohei, N., Aoyama, T., & Inoue, K. (2006). Automatic switching and guidance system to facilitate unassisted uroflowmetry using commercial electronic devices. International Journal of Urology, 13(8), 1154–1155.

    Article  Google Scholar 

  27. 27.

    Siroky, M. B., Olsson, C. A., & Krane, R. J. (1979). The flow rate nomogram: I development. The Journal of urology, 122(5), 665–668.

    Article  Google Scholar 

  28. 28.

    Viarani, N., Massari, N., Gottardi, M., Simoni, A., Margesin, B., Faes, A., et al. (2006). A low-cost microsystem for noninvasive uroflowmetry. IEEE Transactions on Instrumentation and Measurement, 55(3), 964–971.

    Article  Google Scholar 

  29. 29.

    Altunay, S., Telatar, Z., Erogul, O., & Aydur, E. Interpretation of uroflow graphs with artificial neural networks. In 2006 IEEE 14th Signal Processing and Communications Applications, 2006 (pp. 1–4). IEEE.

  30. 30.

    Shokoueinejad, M., Fernandez, C., Carroll, E., Wang, F., Levin, J., Rusk, S., et al. (2017). Sleep apnea: A review of diagnostic sensors, algorithms, and therapies. Physiological Measurement, 38(9), R204.

    Article  Google Scholar 

  31. 31.

    Hitt, D., Zvarova, K., & Zvara, P. (2009). Urinary flow measurements via acoustic signatures with application to telemedicine. Institute of Aeronautics and Astronautics, 1–10.

  32. 32.

    Krhut, J., Gärtner, M., Sýkora, R., Hurtík, P., Burda, M., Zvarová, K., et al. (2015). MP71-07 validation of a new sound-based method for recording voiding parameters using simultaneous uroflowmetry. The Journal of urology, 193(4), e914.

    Article  Google Scholar 

  33. 33.

    Wiens, K., Green, S., & Grecov, D. (2014). Novel optical uroflowmeter using image processing techniques. Measurement, 47, 314–320.

    Article  Google Scholar 

  34. 34.

    Shokoueinejad, M., Alkashgari, R., Mosli, H. A., Alothmany, N., Levin, J. M., & Webster, J. G. (2017). Video voiding device for diagnosing lower urinary tract dysfunction in men. Journal of Medical and Biological Engineering. https://doi.org/10.1007/s40846-017-0283-8.

    Google Scholar 

  35. 35.

    Mosli, H. A., Alothmany, N., Webster, J. G., Maragheh, M. S., & Alkashgari, R. (2014). Video voiding device for diagnosing lower urinary tract dysfunction. Jeddah: King Abdulaziz University.

    Google Scholar 

  36. 36.

    Bray, A., Griffiths, C., Drinnan, M., & Pickard, R. (2012). Methods and value of home uroflowmetry in the assessment of men with lower urinary tract symptoms: A literature review. Neurourology and Urodynamics, 31(1), 7–12.

    Article  Google Scholar 

  37. 37.

    Caffarel, J., Robson, W., Pickard, R., Griffiths, C., & Drinnan, M. (2007). Flow measurements: Can several “wrongs” make a “right”? Neurourology and Urodynamics, 26(4), 474–480.

    Article  Google Scholar 

  38. 38.

    Drach, G., & Binard, W. (1976). Disposable peak urinary flowmeter estimates lower urinary tract obstruction. The Journal of urology, 115(2), 175–179.

    Article  Google Scholar 

  39. 39.

    Caffarel, J., Robson, W., Pickard, R., Newton, D., Griffiths, C., & Drinnan, M. (2006). Home uroflow device: Basic but more accurate than standard in-clinic uroflowmetry? Neurourology and Urodynamics, 25(6), 632–633.

    Google Scholar 

  40. 40.

    Currie, R. J. (1998). The Streamtest cup: A new uroflow device. Urology, 52(6), 1118–1121.

    Article  Google Scholar 

  41. 41.

    De La Rosette, J., Witjes, W., Debruyne, F., Kersten, P., & Wijkstra, H. (1996). Improved reliability of uroflowmetry investigations: Results of a portable home-based uroflowmetry study. British Journal of Urology, 78(3), 385–390.

    Article  Google Scholar 

  42. 42.

    Pridgeon, S., Harding, C., Newton, D., & Pickard, R. (2007). Clinical evaluation of a simple uroflowmeter for categorization of maximum urinary flow rate. Indian journal of urology: IJU: journal of the Urological Society of India, 23(2), 114.

    Article  Google Scholar 

  43. 43.

    Jørgensen, J., Jacobsen, H., Bagi, P., Hvarnes, H., & Colstrup, H. (1998). Home uroflowmetry by means of the Da CapoTM home uroflowmeter. European Urology, 33(1), 64–68.

    Article  Google Scholar 

  44. 44.

    Guan, Z., Deng, X., & Zhang, Q. (2011). Comparison of new portable home electronic uroflowmeter with laborie uroflowmeter. Beijing da xue xue bao Yi xue ban = Journal of Peking University. Health Sciences, 43(4), 616–619.

    Google Scholar 

  45. 45.

    Chan, C. K., Yip, S. K. H., Wu, I. P., Li, M. L., & Chan, N. H. (2012). Evaluation of the clinical value of a simple flowmeter in the management of male lower urinary tract symptoms. BJU International, 109(11), 1690–1696.

    Article  Google Scholar 

  46. 46.

    Boci, R., Fall, M., Waldén, M., Knutson, T., & Dahlstrand, C. (1999). Home uroflowmetry: Improved accuracy in outflow assessment. Neurourology and Urodynamics, 18(1), 25–32.

    Article  Google Scholar 

  47. 47.

    Mombelli, G., Picozzi, S., Messina, G., Truffelli, D., Marenghi, C., Maffi, G., et al. (2014). Free uroflowmetry versus “Do-It-Yourself” uroflowmetry in the assessment of patients with lower urinary tract symptoms. International Urology and Nephrology, 46(10), 1915–1919.

    Article  Google Scholar 

  48. 48.

    Wein, A., & Barrett, D. (1993). Practical urodynamics. American Urology Association Update Series, 12.

  49. 49.

    Gierup, J. (1970). Micturition studies in infants and children: Intravesical pressure, urinary flow and urethral resistance in boys without infravesical obstruction. Scandinavian Journal of Urology and Nephrology, 4(3), 217–230.

    Article  Google Scholar 

  50. 50.

    Backman, K., Von Garrelts, B., & Sundblad, R. (1966). Micturition in normal women. Studies of pressure and flow. Acta Chirurgica Scandinavica, 132(4), 403–412.

    Google Scholar 

  51. 51.

    Gammie, A., Clarkson, B., Constantinou, C., Damaser, M., Drinnan, M., Geleijnse, G., et al. (2014). International Continence Society guidelines on urodynamic equipment performance. Neurourology and Urodynamics, 33(4), 370–379.

    Article  Google Scholar 

  52. 52.

    Zhang, X., Medow, J., Iskandar, B., Wang, F., Shokoueinejad, M., Koueik, J., et al. (2017). Invasive and noninvasive means of measuring intracranial pressure: A review. Physiological Measurement, 38(8), R143.

    Article  Google Scholar 

  53. 53.

    Reynard, J. M., Peters, T. J., Lim, C., & Abrams, P. (1996). The value of multiple free-flow studies in men with lower urinary tract symptoms. British Journal of Urology, 77(6), 813–818.

    Article  Google Scholar 

  54. 54.

    Meziane, N., Yang, S., Shokoueinejad, M., Webster, J., Attari, M., & Eren, H. (2015). Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography. Physiological Measurement, 36(3), 513.

    Article  Google Scholar 

Download references

Acknowledgements

This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant (HiCi/1432-4-8). The team acknowledges the deanship technical and administrative support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shokoueinejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alothmany, N., Mosli, H., Shokoueinejad, M. et al. Critical Review of Uroflowmetry Methods. J. Med. Biol. Eng. 38, 685–696 (2018). https://doi.org/10.1007/s40846-018-0375-0

Download citation

Keywords

  • Uroflowmetry
  • Urodynamics
  • Urine flow
  • Urine
  • Voiding volume
  • Bladder filling