Wyndaele, M., & Wyndaele, J.-J. (2006). Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord, 44(9), 523–529.
Article
Google Scholar
Harvey, L., Batty, J., Jones, R., & Crosbie, J. (2001). Hand function of C6 and C7 tetraplegics 1–16 years following injury. Spinal Cord, 39(1), 37–43.
Article
Google Scholar
Snoek, G., IJzerman, M. J., Hermens, H., Maxwell, D., & Biering-Sorensen, F. (2004). Survey of the needs of patients with spinal cord injury: Impact and priority for improvement in hand function in tetraplegics. Spinal Cord, 42(9), 526–532.
Article
Google Scholar
French, J. S., Anderson-Erisman, K. D., & Sutter, M. (2010). What do spinal cord injury consumers want? A review of spinal cord injury consumer priorities and neuroprosthesis from the 2008 neural interfaces conference. Neuromodulation: Journal of the International Neuromodulation Society, 13(3), 229–231.
Article
Google Scholar
Peckham, P. H., Keith, M. W., Kilgore, K. L., Grill, J. H., Wuolle, K. S., Thrope, G. B., et al. (2001). Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: A multicenter study. Archives of Physical Medicine and Rehabilitation, 82(10), 1380–1388.
Article
Google Scholar
Barsi, G. I., Popovic, D. B., Tarkka, I. M., Sinkjær, T., & Grey, M. J. (2008). Cortical excitability changes following grasping exercise augmented with electrical stimulation. Experimental Brain Research, 191(1), 57–66.
Article
Google Scholar
Knutson, J. S., Fu, M. J., Sheffler, L. R., & Chae, J. (2015). Neuromuscular electrical stimulation for motor restoration in Hemiplegia. Physical Medicine and Rehabilitation Clinics of North America., 26(4), 729.
Article
Google Scholar
Pool, D., Blackmore, A. M., Bear, N., & Valentine, J. (2014). Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatric Physical Therapy, 26(3), 308–317.
Article
Google Scholar
McGie, S. C., Zariffa, J., Popovic, M. R., & Nagai, M. K. (2015). Short-term neuroplastic effects of brain-controlled and muscle-controlled electrical stimulation. Neuromodulation: Journal of the International Neuromodulation Society, 18(3), 233–240.
Article
Google Scholar
Pfurtscheller, G., Müller, G. R., Pfurtscheller, J., Gerner, H. J., & Rupp, R. (2003). “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters, 351(1), 33–36.
Article
Google Scholar
Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R., et al. (2013). Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artificial Intelligence in Medicine, 59(2), 133–142.
Article
Google Scholar
Kreilinger, A., Kaiser, V., Rohm, M., Rupp, R., & Müller-Putz, G. R. (2013). BCI and FES training of a spinal cord injured end-User to control a neuroprosthesis. Biomedizinische Technik, 58, 58–59.
Google Scholar
Bunge, R., Puckett, W., Becerra, J., Marcillo, A., & Quencer, R. (1993). Observations on the pathology of spinal cord injury. Advances in Neurology, 59, 75–89.
Google Scholar
Birbaumer, N., & Cohen, L. G. (2007). Brain–computer interfaces: Communication and restoration of movement in paralysis. The Journal of Physiology, 579(Pt 3), 621–636.
Article
Google Scholar
Grosse-Wentrup, M., Mattia, D., & Oweiss, K. (2011). Using brain–computer interfaces to induce neural plasticity and restore function. Journal of Neural Engineering, 8(2), 25004.
Article
Google Scholar
Sheffler, L. R., & Chae, J. (2007). Neuromuscular electrical stimulation in neurorehabilitation. Muscle and Nerve, 35(5), 562–590.
Article
Google Scholar
Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F. L., et al. (2013). Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 74(1), 100–108.
Article
Google Scholar
Chung, E., Park, S.-I., Jang, Y.-Y., & Lee, B. H. (2015). Effects of brain–computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: Preliminary results. Journal of Physical Therapy Science, 27, 513–516.
Article
Google Scholar
Li, M., Liu, Y., Wu, Y., Liu, S., Jia, J., & Zhang, L. (2014). Neurophysiological substrates of stroke patients with motor imagery-based brain–computer interface training. The International Journal of Neuroscience, 124(6), 403–415.
Article
Google Scholar
Marino, R. J., Barros, T., Biering-Sorensen, F., Burns, S. P., Donovan, W. H., Graves, D. E., et al. (2003). International standards for neurological classification of spinal cord injury. Journal of Spinal Cord Medicine, 26, 50–56.
Article
Google Scholar
Vučković, A., Wallace, L., & Allan, D. B. (2015). Hybrid brain–computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: A proof-of-concept study. Journal of Neurologic Physical Therapy: JNPT, 39(1), 3–14.
Article
Google Scholar
King, C. E., Wang, P. T., McCrimmon, C. M., Chou, C. C., Do, A. H., & Nenadic, Z. (2015). The feasibility of a brain–computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. Journal of NeuroEngineering and Rehabilitation, 12(1), 80.
Article
Google Scholar
Osuagwu, B. C. A., Wallace, L., Fraser, M., & Vuckovic, A. (2016). Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: A randomised pilot study. Journal of Neural Engineering, 13(6), 65002.
Article
Google Scholar
Turner, D. L., Ramos-Murguialday, A., Birbaumer, N., Hoffmann, U., & Luft, A. (2013). Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations. Frontiers in Neurology, 4, 184.
Article
Google Scholar
Lynch, C., & Popovic, M. R. (2008). Functional electrical stimulation. IEEE Control Systems, 28(2), 40–50.
MathSciNet
Article
Google Scholar
Lohse, K., Shirzad, N., Verster, A., Hodges, N., & Van der Loos, H. F. M. (2013). Video games and rehabilitation: Using design principles to enhance engagement in physical therapy. Journal of Neurologic Physical Therapy, 37(4), 166–175.
Article
Google Scholar
Hinterberger, T., Neumann, N., Pham, M., Kübler, A., Grether, A., Hofmayer, N., et al. (2004). A multimodal brain-based feedback and communication system. Experimental Brain Research, 154(4), 521–526.
Article
Google Scholar
Donati, A. R. C., Shokur, S., Morya, E., Campos, D. S. F., Moioli, R. C., Gitti, C. M., et al. (2016). Long-term training with a brain–machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports, 6(April), 30383.
Article
Google Scholar
Kirshblum, S. C., Waring, W., Biering-Sorensen, F., Burns, S. P., Johansen, M., Schmidt-Read, M., et al. (2011). Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. The Journal of Spinal Cord Medicine, 34(6), 547–554.
Article
Google Scholar
Daniels, B., & Worthingbam, C. (1974). Muscle testing, techniques of manual examination. American Journal of Physical Medicine and Rehabilitation, 53(5), 241.
Google Scholar
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified ashworth scale of muscle spasticity. Physical Therapy, 67, 206–207.
Article
Google Scholar
López-Larraz, E., Montesano, L., Gil-agudo, Á., & Minguez, J. (2014). Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. Journal of Neuroengineering and Rehabilitation, 11, 153–167.
Article
Google Scholar
López-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., Del-Ama, A. J., Aranda, J., Minguez, J., et al. (2016). Control of an ambulatory exoskeleton with a brain–machine interface for spinal cord injury gait rehabilitation. Frontiers in Neuroscience, 10, 359.
Article
Google Scholar
Maeder, C. L., Sannelli, C., Haufe, S., & Blankertz, B. (2012). Pre-stimulus sensorimotor rhythms influence brain–computer interface classification performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 653–662.
Article
Google Scholar
Pfurtscheller, G., & Andrew, C. (1999). Event-related changes of band power and coherence: Methodology and interpretation. Journal of Clinical Neurophysiology, 16(6), 512–519.
Article
Google Scholar
Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117(11), 2341–2356.
Article
Google Scholar
Ibáñez, J., Serrano, J. I., del Castillo, M. D., Monge-Pereira, E., Molina-Rueda, F., Alguacil-Diego, I., et al. (2014). Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. Journal of Neural Engineering, 11(5), 56009.
Article
Google Scholar
Bos, R., De Waele, S., & Broersen, P. M. T. (2002). Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Transactions on Instrumentation and Measurement, 51(6), 1289–1294.
Article
Google Scholar
Costa, Á., Iáñez, E., Úbeda, A., Hortal, E., Del-Ama, A. J., Gil-Agudo, Á., et al. (2016). Decoding the attentional demands of gait through EEG gamma band features. PLoS ONE, 11(4), e0154136.
Article
Google Scholar
Garipelli, G., Chavarriaga, R., Del, R., & Millán, J. (2013). Single trial analysis of slow cortical potentials: A study on anticipation related potentials. Journal of Neural Engineering, 10(3), 36014.
Article
Google Scholar
Clemmensen, L., Hastie, T., Witten, D., & Ersbøll, B. (2011). Sparse discriminant analysis. Technometrics, 53(4), 406–413.
MathSciNet
Article
Google Scholar
López-Larraz, E., Ibáñez, J., Trincado-Alonso, F., Monge-Pereira, E., Pons, J. L., & Montesano, L. (2017). Comparing recalibration strategies for electroencephalography-based decoders of movement intention in neurological patients with motor disability. International journal of Neural Systems: In Press.
Google Scholar
Fekete, C., Eriks-Hoogland, I., Baumberger, M., Catz, A., Itzkovich, M., Lüthi, H., et al. (2013). Development and validation of a self-report version of the spinal cord independence measure (SCIM III). Spinal Cord, 51(1), 40–47.
Article
Google Scholar
Kalsi-Ryan, S., Curt, A., Fehlings, M. G., & Verrier, M. C. (2009). Assessment of the hand in tetraplegia using the graded redefined assessment of strength, sensibility and prehension (GRASSP). Topics in Spinal Cord Injury Rehabilitation, 14(4), 34–46.
Article
Google Scholar
Lange, B., Flynn, S., Proffitt, R., Chang, C.-Y., & Rizzo, A. S. (2010). Development of an interactive game-based rehabilitation tool for dynamic balance training. Topics in Stroke Rehabilitation, 17(5), 345–352.
Article
Google Scholar
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Candinavian Journal of Rehabilitation Medicine, 2(2), 92.
Google Scholar
López-Larraz, E., Trincado-Alonso, F., & Montesano, L. (2015). Brain–machine interfaces for motor rehabilitation: Is recalibration important? In IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 223–228).
Takahashi, M., Takeda, K., Otaka, Y., Osu, R., Hanakawa, T., Gouko, M., et al. (2012). Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: A feasibility study. Journal of Neuroengineering and Rehabilitation, 9(1), 56.
Article
Google Scholar
Miralles, F., Vargiu, E., Dauwalder, S., Solà, M., Müller-putz, G., Wriessnegger, S. C., et al. (2015). Brain computer interface on track to home. The Scientific World Journal, 2015, 17.
Article
Google Scholar
Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19, 84–90.
Article
Google Scholar
Ring, H., & Rosenthal, N. (2005). Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. Journal of Rehabilitation Medicine, 37(1), 32–36.
Article
Google Scholar
López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., & Oliviero, A. (2015). Evolution of EEG motor rhythms after spinal cord injury: A longitudinal study. PLoS ONE, 10(7), e0131759.
Article
Google Scholar
López-Larraz, E., Antelis, J. M., Montesano, L., Gil-Agudo, A., & Minguez, J. (2012). Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. Conference proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2012, (pp. 1798–801).
Patil, S., Raza, W., Jamil, F., Caley, R., & O’Connor, R. (2014). Functional electrical stimulation for the upper limb in tetraplegic spinal cord injury: A systematic review. Journal of Medical Engineering & Technology, 39(7), 419–423.
Article
Google Scholar
Rupp, R. (2014). Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury. Frontiers in Neuroengineering, 7(September), 38.
Google Scholar