Advertisement

Journal of Medical and Biological Engineering

, Volume 38, Issue 4, pp 607–617 | Cite as

Evaluation of Rabbit VX2 Tumor Model Using Magnetic Resonance T1-Mapping and T2-Mapping Techniques at 1.5T

  • San-Ho Hung
  • Jo-Chi Jao
  • Jiun-Siang Tzeng
  • Chen-Hui Huang
  • Lain-Chyr Hwang
  • Po-Chou ChenEmail author
Original Article

Abstract

Most routine magnetic resonance imaging only investigates morphology differences between normal and abnormal tissues. Magnetic resonance T1 and T2 relaxation times are important indices for evaluating pathological changes in tissue. T1-mapping and T2-mapping techniques can be used to perform quantitative analysis as well as qualitative analysis of tissue characteristics. This study aimed to perform long-term monitoring of the VX2 tumor progression and distribution on New Zealand rabbit thigh tissue using three dimensional T1-weighted (T1W) sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE), T2-weighted (T2W) SPACE, T1-mapping and T2-mapping techniques. The signal intensity (SI), T1 and T2 relaxation times of normal muscle and VX2 tumor were measured to evaluate the tumor characteristics. The nonparametric Mann–Whitney U test results showed that there were significant differences in SIs of T1W SPACE images, SIs of T2W SPACE images, T1 relaxation time and T2 relaxation time at the same day after VX2 implantation between normal tissue and VX2 tumor (p values < 0.05). There were also significant differences in time course average values of SIs of T1W SPACE images, SIs of T2W SPACE images, T1 relaxation time and T2 relaxation time between normal tissue and VX2 tumor (p values < 0.05). T2W SPACE, T1 mapping and T2 mapping were superior to T1W SPACE in the early detection of VX2 tumor. T1 mapping and T2 mapping techniques could be used to evaluate tumor growth and metastasis. T1 and T2 maps might be referenced as biomarkers and predictive indices in the evolution of pathologies.

Keywords

T1-mapping T2-mapping VX2 tumor model SPACE T1 relaxation time T2 relaxation time 

Notes

Acknowledgements

This work was supported by Fooyin University Hospital, Taiwan, under grant FH-HR-103-03.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

References

  1. 1.
    An, Y. Y., Kim, S. H., & Kang, B. J. (2017). Differentiation of malignant and benign breast lesions: Added value of the qualitative analysis of breast lesions on diffusion-weighted imaging (DWI) using readout-segmented echo-planar imaging at 3.0 T. PLoS ONE, 12(3), e0174681. doi: 10.1371/journal.pone.0174681.CrossRefGoogle Scholar
  2. 2.
    Assili, S., Fathi Kazerooni, A., Aghaghazvini, L., Saligheh Rad, H. R., & Pirayesh Islamian, J. (2015). Dynamic contrast magnetic resonance imaging (DCE-MRI) and diffusion weighted MR imaging (DWI) for differentiation between benign and malignant salivary gland tumors. Journal of Biomedical Physics and Engineering, 5(4), 157–168.Google Scholar
  3. 3.
    Rhee, H., Kim, M. J., Park, M. S., & Kim, K. A. (2012). Differentiation of early hepatocellular carcinoma from benign hepatocellular nodules on gadoxetic acid-enhanced MRI. British Journal of Radiology, 85(1018), e837–e844. doi: 10.1259/bjr/13212920.CrossRefGoogle Scholar
  4. 4.
    Chen, C. M., Chen, C. C., Wu, M. C., Horng, G., Wu, H. C., Hsueh, S. H., et al. (2015). Automatic contrast enhancement of brain MR images using hierarchical correlation histogram analysis. Journal of Medical and Biological Engineering, 35(6), 724–734.CrossRefGoogle Scholar
  5. 5.
    Thomassin Naggara, I., Soualhi, N., Balvay, D., Darai, E., & Cuenod, C. A. (2017). Quantifying tumor vascular heterogeneity with DCE-MRI in complex adnexal masses: A preliminary study. Journal of Magnetic Resonance Imaging. doi: 10.1002/jmri.25707.Google Scholar
  6. 6.
    Fusco, R., Sansone, M., Filice, S., Carone, G., Amato, D. M., Sansone, C., et al. (2016). Pattern recognition approaches for breast cancer DCE-MRI classification: A systematic review. Journal of Medical and Biological Engineering, 36(4), 449–459.CrossRefGoogle Scholar
  7. 7.
    Traynor, C. R., Barker, G. J., Crum, W. R., Williams, S. C., & Richardson, M. P. (2011). Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage, 56(3), 939–950.CrossRefGoogle Scholar
  8. 8.
    Stanisz, G. J., Odrobina, E. E., Pun, J., Escaravage, M., Graham, S. J., Bronskill, M. J., et al. (2005). T1, T2 relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine, 54(3), 507–512.CrossRefGoogle Scholar
  9. 9.
    Wang, H. Z., Riederer, S. J., & Lee, J. N. (1987). Optimizing the precision in T1 relaxation estimation using limited flip angles. Magnetic Resonance in Medicine, 5(5), 399–416.CrossRefGoogle Scholar
  10. 10.
    Kingsley, P. B. (1999). Signal intensities and T1 calculations in multiple-echo sequences with imperfect pulses. Concepts in Magenetic Resonance, 11(1), 29–49.CrossRefGoogle Scholar
  11. 11.
    Kingsley, P. B. (1999). Methods of measuring spin-lattice (T1) relaxation times: An annotated bibliography. Concepts in Magenetic Resonance, 11(4), 243–276.CrossRefGoogle Scholar
  12. 12.
    Cho, S., Jones, D., Reddick, W. E., Ogg, R. J., & Steen, R. G. (1997). Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magnetic Resonance Imaging, 15(10), 1133–1143.CrossRefGoogle Scholar
  13. 13.
    Kurland, R. J. (1985). Strategies and tactics in NMR imaging relaxation time measurements. I. Minimizing relaxation time errors due to image noise—the ideal case. Magnetic Resonance in Medicine, 2(2), 136–158.CrossRefGoogle Scholar
  14. 14.
    Lai, S., Wang, J., & Jahng, G. H. (2001). FAIR exempting separate T (1) measurement (FAIREST): A novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR in Biomedicine, 14(7–8), 507–516.CrossRefGoogle Scholar
  15. 15.
    Imran, J., Langevin, F., & Saint-Jalmes, H. (1999). Two-point method for T1 estimation with optimized gradient echo sequence. Magnetic Resonance Imaging, 17(9), 1347–1356.CrossRefGoogle Scholar
  16. 16.
    Parker, G. J., Barker, G. J., & Tofts, P. S. (2001). Accurate multislice gradient echo T(1) measurement in the presence of nonideal RF pulse shape and RF field nonuniformity. Magnetic Resonance in Medicine, 45(5), 838–845.CrossRefGoogle Scholar
  17. 17.
    Mason, G. F., Chu, W. J., & Hetherington, H. P. (1997). A general approach to error estimation and optimized experiment design, applied to multislice imaging of T1 in human brain at 4.1 T. Journal of Magnetic Resonance, 126(1), 18–29.CrossRefGoogle Scholar
  18. 18.
    Ordidge, R. J., Gibbs, P., Chapman, B., Stehling, M. K., & Mansfield, P. (1990). High-speed multislice T1 mapping using inversion-recovery echo-planar imaging. Magnetic Resonance in Medicine, 16(2), 238–245.CrossRefGoogle Scholar
  19. 19.
    Jacobs, M. A., Mitsias, P., Soltanian-Zadeh, H., Santhakumar, S., Ghanei, A., Hammond, R., et al. (2001). Multiparametric MRI tissue characterization in clinical stroke with correlation to clinical outcome: Part 2. Stroke, 32(4), 950–957.CrossRefGoogle Scholar
  20. 20.
    Yuan, J., Chow, S. K., Yeung, D. K., Ahuja, A. T., & King, A. D. (2012). Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck. Quantitative Imaging in Medicine and Surgery, 2(4), 245–253.Google Scholar
  21. 21.
    Franconi, F., Seguin, F., Sonier, C. B., Le Pape, A., & Akoka, S. (1995). T1 mapping from spin echo and stimulated echoes. Medical Physics, 22(11 Pt 1), 1763–1769.CrossRefGoogle Scholar
  22. 22.
    Ropele, S., Bammer, R., Stollberger, R., & Fazekas, F. (2001). T1 maps from shifted spin echoes and stimulated echoes. Magnetic Resonance in Medicine, 46(6), 1242–1245.CrossRefGoogle Scholar
  23. 23.
    Baumert, B., Wörtler, K., Steffinger, D., Schmidt, G. P., Reiser, M. F., & Baur-Melnyk, A. (2009). Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: Three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magnetic Resonance Imaging, 27(7), 954–960. doi: 10.1016/j.mri.2009.01.012.CrossRefGoogle Scholar
  24. 24.
    Chokshi, F. H., Sadigh, G., Carpenter, W., & Allen, J. W. (2017). Diagnostic quality of 3D T2-SPACE compared with T2-FSE in the evaluation of cervical spine MRI anatomy. American Journal of Neuroradiology (AJNR), 38(4), 846–850. doi: 10.3174/ajnr.A5080.CrossRefGoogle Scholar
  25. 25.
    Virmani, S., Harris, K. R., Szolc-Kowalska, B., Paunesku, T., Woloschak, G. E., Lee, F. T., et al. (2008). Comparison of two different methods for inoculating VX2 tumors in rabbit livers and hind limbs. Journal of Vascular and Interventional Radiology, 19(6), 931–936. doi: 10.1016/j.jvir.2008.02.019.CrossRefGoogle Scholar
  26. 26.
    Constable, R. T., Smith, R. C., & Gore, J. C. (1992). Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging. Journal of Computer Assisted Tomography, 16(1), 41–47.CrossRefGoogle Scholar
  27. 27.
    Wright, P. J., Mougin, O. E., Totman, J. J., Peters, A. M., Brookes, M. J., Coxon, R., et al. (2008). Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: Results and optimization. MAGMA, 21(1–2), 121–130.CrossRefGoogle Scholar
  28. 28.
    Gowland, P. A., Leach, M. O., & Sharp, J. C. (1989). The use of an improved inversion pulse with the spin-echo/inversion-recovery sequence to give increased accuracy and reduced imaging time for T1 measurements. Magnetic Resonance in Medicine, 12(2), 261–267.CrossRefGoogle Scholar
  29. 29.
    Tofts, P. S. (2004). Quantitative MRI of the brain: Measuring changes caused by disease. West Sussex: Wiley.Google Scholar
  30. 30.
    Jahng, G. H., Stables, L., Ebel, A., Matson, G. B., Meyerhoff, D. J., Weiner, M. W., et al. (2005). Sensitive and fast T1 mapping based on two inversion recovery images and a reference image. Medical Physics, 32(6), 1524–1528.CrossRefGoogle Scholar
  31. 31.
    Siemonsen, S., Löbel, U., Sedlacik, J., Forkert, N. D., Mouridsen, K., Østergaard, L., et al. (2012). Elevated T2-values in MRI of stroke patients shortly after symptom onset do not predict irreversible tissue infarction. Brain, 135(Pt 6), 1981–1989.CrossRefGoogle Scholar
  32. 32.
    Grade, M., Hernandez Tamames, J. A., Pizzini, F. B., Achten, E., Golay, X., & Smits, M. (2015). A neroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology, 57(12), 1181–1202. doi: 10.1007/s00234-015-1571-z.CrossRefGoogle Scholar
  33. 33.
    Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S., & Edelman, R. R. (1998). A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic Resonance in Medicine, 40(3), 383–396.CrossRefGoogle Scholar
  34. 34.
    Wang, J., Alsop, D. C., Li, L., Listerud, J., Gonzalez-At, J. B., Schnall, M. D., et al. (2002). Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magnetic Resonance in Medicine, 48(2), 242–254.CrossRefGoogle Scholar
  35. 35.
    Prantner, A. M., Bretthorst, G. L., Neil, J. J., Garbow, J. R., & Ackerman, J. J. (2008). Magnetization transfer induced biexponential longitudinal relaxation. Magnetic Resonance in Medicine, 60(3), 555–563.CrossRefGoogle Scholar
  36. 36.
    Stanisz, G. J., Odrobina, E. E., Pun, J., Escaravage, M., Graham, S. J., Bronskill, M. J., et al. (2005). T1, T2 relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine, 54(3), 507–512.CrossRefGoogle Scholar
  37. 37.
    Baron, P., Deckers, R., Knuttel, F. M., & Bartels, L. W. (2015). T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: Groundwork for monitoring thermal therapies in the breast. NMR in Biomedicine, 28(11), 1463–1470. doi: 10.1002/nbm.3410.CrossRefGoogle Scholar
  38. 38.
    Parmala, M., Eriksson, M., Rytioja, M., Tanttu, J., & Köhler, M. (2016). Temperature measurement in human fat with T2 imaging. Journal of Magnetic Resonance Imaging, 43(5), 1171–1178. doi: 10.1002/jmri.25064.CrossRefGoogle Scholar
  39. 39.
    Lewa, C. J., & Majewska, Z. (1980). Temperature relationships of proton spin-lattice relaxation time T1 in biological tissues. Bulletin du Cancer (Paris), 67(5), 525–530.Google Scholar
  40. 40.
    Graham, S. J., Bronskill, M. J., & Henkelman, R. M. (1998). Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magnetic Resonance in Medicine, 39(2), 198–203.CrossRefGoogle Scholar
  41. 41.
    Rieke, V., & Butts Pauly, K. (2008). MR thermometry. Journal of Magnetic Resonance Imaging, 27(2), 376–390. doi: 10.1002/jmri.21265.CrossRefGoogle Scholar
  42. 42.
    Johnston, J. H., Kim, H. K., Merrow, A. C., Laor, T., Serai, S., Horn, P. S., et al. (2015). Quantitative skeletal muscle MRI: Part 1, derived T2 fat map in differentiation between boys with Duchenne muscular dystrophy and healthy boys. American Journal of Roentgenology (AJR), 205(2), W207–W215.CrossRefGoogle Scholar
  43. 43.
    Kim, H. K., Serai, S., Lindquist, D., Merrow, A. C., Horn, P. S., Kim, D. H., et al. (2015). Quantitative skeletal muscle MRI: Part 2, MR spectroscopy and T2 relaxation time mapping-comparison between boys with Duchenne muscular dystrophy and healthy boys. American Journal of Roentgenology (AJR), 205(2), W216–W223. doi: 10.2214/AJR.14.13755.CrossRefGoogle Scholar
  44. 44.
    Arpan, I., Forbes, S. C., Lott, D. J., Senesac, C. R., Daniels, M. J., Triplett, W. T., et al. (2013). T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: A cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy. NMR in Biomedicine, 26(3), 320–328. doi: 10.1002/nbm.2851.CrossRefGoogle Scholar
  45. 45.
    Lescher, S., Jurcoane, A., Veit, A., Bähr, O., Deichmann, R., & Hattingen, E. (2015). Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: Earlier detection of tumor progression compared to conventional MRI. Neuroradiology, 57(1), 11–20. doi: 10.1007/s00234-014-1445-9.CrossRefGoogle Scholar
  46. 46.
    Aravalli, R. N., & Cressman, E. N. (2015). Relevance of rabbit VX2 tumor model for studies on human hepatocellular carcinoma: A MicroRNA-based study. Journal of Clinical Medicine, 4(12), 1989–1997. doi: 10.3390/jcm4121954.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringI-Shou UniversityKaohsiung CityTaiwan, ROC
  2. 2.Department of Electrical EngineeringI-Shou UniversityKaohsiung CityTaiwan, ROC
  3. 3.Department of RadiologyFooyin University HospitalDonggang TownshipTaiwan, ROC
  4. 4.Department of Medical Imaging and Radiological Sciences, College of Health SciencesKaohsiung Medical UniversityKaohsiung CityTaiwan, ROC
  5. 5.Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung CityTaiwan, ROC

Personalised recommendations