Journal of Medical and Biological Engineering

, Volume 38, Issue 4, pp 654–665 | Cite as

Investigation of the Mechanical Behavior of Polyester Meshes for Abdominal Surgery: A Preliminary Study

  • Silvia TodrosEmail author
  • Paola Pachera
  • Piero G. Pavan
  • Arturo N. Natali
Original Article


Due to the high cost of synthetic surgical meshes, sterilized non-medical-grade nets are being used for hernia repair in less developed countries, even if a prior in vitro evaluation of their mechanical behavior is still lacking. In this work, two multifilament polyester nets, with material composition, pore size and fiber diameter similar to surgical meshes, are studied. The mechanical properties are compared with the ones of a standard surgical mesh made of a monofilament polyester fiber. Uniaxial tensile tests are performed to evaluate the mechanical behavior, investigating specific aspects as the effect of sample size and strain rate. Mechanical tests highlight an anisotropic behavior in both industrial nets, with stiffness largely depending on test direction. The surgical mesh exhibits a linear anisotropic response, with a different stiffening behavior and a lower degree of anisotropy than industrial nets. Therefore, a different global mechanical response may be expected in vivo. This investigation of the mechanical properties of polyester industrial nets provides a preliminary support to their use for abdominal surgery, even though a different mechanical response is found respect to surgical mesh due to their different structural conformation.


Synthetic surgical mesh Mechanical properties Hernia repair Tensile testing 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Shankaran, V., Weber, D. J., Reed, R. L., & Luchette, F. A. (2011). A review of available prosthetics for ventral hernia repair. Annals of Surgery, 253(1), 16–26.CrossRefGoogle Scholar
  2. 2.
    Frey, D. M., Wildisen, A., Hamel, C. T., Zuber, M., Oerti, D., & Metzger, J. (2007). Randomized clinical trial of Lichtenstein’s operation versus mesh plug for inguinal hernia repair. British Journal of Surgery, 94(1), 36–41.CrossRefGoogle Scholar
  3. 3.
    Franneby, U., Sandblom, G., Nordin, P., Olof, N., & Ulf, G. (2006). Risk factors for long-term pain after hernia surgery. Annals of Surgery, 244(2), 212–219.CrossRefGoogle Scholar
  4. 4.
    Wilhelm, T. J., Anemana, S., Kyamanywa, P., Rennie, J., Post, S., & Freudenberg, S. (2006). Anaesthesia for elective inguinal hernia repair in rural Ghana—appeal for local anaesthesia in resource-poor countries. Tropical Doctor, 36(3), 147–149.CrossRefGoogle Scholar
  5. 5.
    Clarke, M. G., Oppong, C., Simmermacher, R., Park, K., Kurzer, M., Vanotoo, L., et al. (2009). The use of sterilised polyester mosquito net mesh for inguinal hernia repair in Ghana. Hernia, 13(2), 155–159.CrossRefGoogle Scholar
  6. 6.
    Kingsnorth, A. (2007). Commercial mesh vs. nylon mosquito net for hernia repair. World Journal of Surgery, 31(4), 859.CrossRefGoogle Scholar
  7. 7.
    Gundre, N. P., Iyer, S. P., & Subramaniyan, P. (2012). Prospective randomized controlled study using polyethylene mesh for inguinal hernia meshplasty as a safe and cost-effective alternative to polypropylene mesh. Updates in Surgery, 64(1), 37–42.CrossRefGoogle Scholar
  8. 8.
    Freudenberg, S., Sano, D., Ouangre, E., Weiss, C., & Wilhelm, T. J. (2006). Commercial mesh versus nylon mosquito net for hernia repair. A randomized double-blind study in Burkina Faso. World Journal of Surgery, 30(10), 1784–1789.CrossRefGoogle Scholar
  9. 9.
    Wilhelm, T. J., Freudenberg, S., Jonas, E., Grobholz, R., Post, S., & Kyamanywa, P. (2007). Sterilized mosquito net versus commercial mesh for hernia repair. An experimental study in goats in Mbarara/Uganda. European Surgical Research, 39(5), 312–317.CrossRefGoogle Scholar
  10. 10.
    Sanders, D. L., Kingsnorth, A. N., & Stephenson, B. M. (2013). Mosquito net mesh for abdominal wall hernioplasty: A comparison of material characteristics with commercial prosthetics. World Journal of Surgery, 37(4), 737–745.CrossRefGoogle Scholar
  11. 11.
    Ambroziak, A., Szepietowska, K., & Lubowiecka, I. (2016). Mechanical properties of mosquito nets in the context of hernia repair. Computer Methods in Biomechanics and Biomedical Engineering, 19(3), 286–296.CrossRefGoogle Scholar
  12. 12.
    Klinge, U., Klosterhalfen, B., Conze, J., Limberg, W., Obolenski, B., Ottinger, A. P., et al. (1998). Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. European Journal of Surgery, 164(12), 951–960.CrossRefGoogle Scholar
  13. 13.
    Saberski, E. R., Orenstein, S. B., & Novitsky, Y. W. (2011). Anisotropic evaluation of synthetic surgical meshes. Hernia, 15(1), 47–52.CrossRefGoogle Scholar
  14. 14.
    Deeken, C. R., Abdo, M. S., Frisella, M. M., & Matthews, B. D. (2011). Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair. Journal of the American College of Surgeons, 212(1), 68–79.CrossRefGoogle Scholar
  15. 15.
    Deeken, C. R., Thompson, D. M., Jr., Castile, R. M., & Lake, S. P. (2014). Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. Journal of the Mechanical Behavior of Biomedical Materials, 38, 6–16.CrossRefGoogle Scholar
  16. 16.
    Wolf, M. T., Carruthers, C. A., Dearth, C. L., Crapo, P. M., Huber, A., Burnsed, O. A., et al. (2014). Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research, Part A, 102(1), 234–246.CrossRefGoogle Scholar
  17. 17.
    Rohrnbauer, B., & Mazza, E. (2014). Uniaxial and biaxial mechanical characterization of a prosthetic mesh at different length scales. Journal of the Mechanical Behavior of Biomedical Materials, 29, 7–19.CrossRefGoogle Scholar
  18. 18.
    Todros, S., Pavan, P. G., Pachera, P., & Natali, A. N. (2017). Synthetic surgical meshes used in abdominal wall surgery: Part II—biomechanical aspects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(4), 892–903.CrossRefGoogle Scholar
  19. 19.
    Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103–117.CrossRefGoogle Scholar
  20. 20.
    Snyder, C. W., Graham, L. A., Vick, C. C., Gray, S. H., Finan, K. R., & Hawn, M. T. (2011). Patient satisfaction, chronic pain, and quality of life after elective incisional hernia repair: Effects of recurrence and repair technique. Hernia, 15(2), 123–129.CrossRefGoogle Scholar
  21. 21.
    Maurer, M. M., Rohrnbauer, B., Feola, A., Deprest, J., & Mazza, E. (2014). Mechanical biocompatibility of prosthetic meshes: A comprehensive protocol for mechanical characterization. Journal of the Mechanical Behavior of Biomedical Materials, 40, 42–58.CrossRefGoogle Scholar
  22. 22.
    Hernández-Gascón, B., Peña, E., Pascual, G., Rodríguez, M., Bellón, J. M., & Calvo, B. (2012). Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects. Journal of the Mechanical Behavior of Biomedical Materials, 5(1), 257–271.CrossRefGoogle Scholar
  23. 23.
    Pachera, P., Pavan, P. G., Todros, S., Cavinato, C., Fontanella, C. G., & Natali, A. N. (2016). A numerical investigation of the healthy abdominal wall structures. Journal of Biomechanics, 49(9), 1818–1823.CrossRefGoogle Scholar
  24. 24.
    Szymczak, C., Lubowiecka, I., Tomaszewska, A., & Smietański, M. (2012). Investigation of abdomen surface deformation due to life excitation: Implications for implant selection and orientation in laparoscopic ventral hernia repair. Clinical Biomechanics, 27(2), 105–110.CrossRefGoogle Scholar
  25. 25.
    Velayudhan, S., Martin, D., & Cooper-White, J. (2009). Evaluation of dynamic creep properties of surgical mesh prostheses-uniaxial fatigue. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91(1), 287–296.CrossRefGoogle Scholar
  26. 26.
    Ben Abdelounis, H., Nicolle, S., Otténio, M., Beillas, P., & Mitton, D. (2013). Effect of two loading rates on the elasticity of the human anterior rectus sheath. Journal of the Mechanical Behavior of Biomedical Materials, 20, 1–5.CrossRefGoogle Scholar
  27. 27.
    Kirilova, M. (2012). Time-dependent properties of human umbilical fascia. Connective Tissue Research, 53(1), 21–28.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, X., Kruger, J. A., Jor, J. W., Wong, V., Dietz, H. P., Nash, M. P., et al. (2014). Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. Journal of the Mechanical Behavior of Biomedical Materials, 37, 48–55.CrossRefGoogle Scholar
  29. 29.
    Pavan, P. G., Pachera, P., Todros, S., Tiengo, C., & Natali, A. N. (2016). Mechanical characterization of animal derived grafts for surgical implantation. Journal of Mechanics in Medicine and Biology, 16, 1650023.CrossRefGoogle Scholar
  30. 30.
    Hernández-Gascón, B., Peña, E., Grasa, J., Pascual, G., Bellón, J. M., & Calvo, B. (2013). Mechanical response of the herniated human abdomen to the placement of different prostheses. Journal of Biomechanical Engineering, 135(5), 51004.CrossRefGoogle Scholar
  31. 31.
    Todros, S., Pavan, P. G., & Natali, A. N. (2017). Synthetic surgical meshes used in abdominal wall surgery: Part I—materials and structural conformation. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(3), 689–699.CrossRefGoogle Scholar
  32. 32.
    Pélissier, E. P. (2001). Inguinal hernia: The size of the mesh. Hernia, 5(4), 169–171.CrossRefGoogle Scholar
  33. 33.
    Guérin, G., & Turquier, F. (2013). Impact of the defect size, the mesh overlap and the fixation depth on ventral hernia repairs: A combined experimental and numerical approach. Hernia, 17(5), 647–655.CrossRefGoogle Scholar
  34. 34.
    Todros, S., Natali, A. N., Pace, G., & Di Noto, V. (2013). Correlation between chemical and mechanical properties in renewable poly(ether-block-amide)s for biomedical applications. Macromolecular Chemistry and Physics, 214(18), 2061–2072.CrossRefGoogle Scholar
  35. 35.
    Todros, S., Venturato, C., Natali, A. N., Pace, G., & Di Noto, V. (2014). Effect of steam on structure and mechanical properties of biomedical block copolymers. Journal of Polymer Science Part B: Polymer Physics, 52(20), 1337–1346.CrossRefGoogle Scholar
  36. 36.
    Sharma, M., Sharma, D. B., Chandrakar, S. K., & Sharma, D. (2015). Histopathological comparison of mosquito net with polypropylene mesh for hernia repair: An experimental study in rats. Indian Journal of Surgery, 77(2), 511–514.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Centre for Mechanics of Biological MaterialsUniversity of PadovaPaduaItaly

Personalised recommendations