Journal of Medical and Biological Engineering

, Volume 38, Issue 4, pp 634–645 | Cite as

Assessing Surgical Outcomes via Computational Fluid Dynamics (CFD) Analysis in Cleft Rhinoplasty

  • Kyrin LiongEmail author
  • Eric Gan
  • Shujin Lee
  • Heow Pueh Lee
Original Article


Cleft rhinoplasty is a challenging procedure with variable success in different techniques. To improve surgical outcomes, an objective comparison of techniques is required. This study utilizes computational fluid dynamics (CFD) on pre- and post-operative nasal cavity finite element models to objectively assess the success of cleft rhinoplasty performed on a patient with congenital cleft nasal deformity. Airflow, pressure drop, velocity, and their associated post-operative changes were calculated with an emphasis on the obstructed area. This revealed increased symmetry between the left and right cavities in all parameters post-operatively suggesting good surgical outcome. Focusing on the obstruction site and analyzing the absolute parametric values, instead of observing obscure, subjective flow lines, allowed for an efficient and objective comparison between models. By extending this quantitative comparison via CFD for different cleft lip/palate (CL/P) cases, and observing the relative success of each procedure, a basis for guidelines for CL/P correction could be formed, which could dramatically improve surgical outcomes.


Cleft rhinoplasty Surgical outcomes Computational fluid dynamics Quantitative analysis 



This project was not funded by any external source.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Freeman, A. K., Mercer, N. S. G., & Roberts, L. M. (2013). Nasal asymmetry in unilateral cleft lip and palate. Journal of Plastic, Reconstructive & Aesthetic Surgery, 66(4), 506–512.CrossRefGoogle Scholar
  2. 2.
    Goodacre, T., & Swan, M. C. (2012). Cleft lip and palate: Current management. Paediatrics and Child Health, 22(4), 160–168.CrossRefGoogle Scholar
  3. 3.
    Tibesar, R. J., Black, A., & Sidman, J. D. (2009). Surgical repair of cleft lip and cleft palate. Operative Techniques in Otolaryngology, 20(4), 245–255.CrossRefGoogle Scholar
  4. 4.
    Fisher, M. D., Fisher, D. M., & Marcus, J. R. (2014). Correction of the cleft nasal deformity: From infancy to maturity. Clinics in Plastic Surgery, 41(2), 283–299.CrossRefGoogle Scholar
  5. 5.
    Cho, B. C., & Baik, B. S. (2001). Correction of cleft lip nasal deformity in orientals using a refined reverse-u incision and v-y plasty. British Journal of Plastic Surgery, 54(7), 588–596.CrossRefGoogle Scholar
  6. 6.
    Kaufman, Y., Buchanan, E. P., Wolfswinkel, E. M., Weathers, W. M., & Stal, S. (2012). Cleft nasal deformity and rhinoplasty. Seminars in Plastic Surgery, 26(4), 184–190.Google Scholar
  7. 7.
    Tiong, W. H. C., Zain, M. A. M., & Basiron, N. H. (2014). Augmentation rhinoplasty in cleft lip nasal deformity: Preliminary patients’ perspective. Plastic Surgery International, 2014(2014), 1–7.CrossRefGoogle Scholar
  8. 8.
    Trotman, C. A., Phillips, C., Essick, G. K., Faraway, J. J., Barlow, S. M., Losken, H. W., et al. (2007). Functional outcomes of cleft lip surgery. Part I: Study design and surgeon ratings of lip disability and need for lip revision. The Cleft Palate-Craniofacial Journal, 44(6), 598–606.CrossRefGoogle Scholar
  9. 9.
    Chaaban, M., & Corey, J. P. (2011). Assessing nasal air flow. Proceedings of the American Thoracic Society, 8(1), 70–78.CrossRefGoogle Scholar
  10. 10.
    Hemtiwakorn, K., Mahasitthiwat, V., Tungjitkusolmun, S., Hamamoto, K., & Pintavirooj, C. (2015). Patient-specific aided surgery approach of deviated nasal septum using computational fluid dynamics. IEEJ Transactions on Electrical and Electronic Engineering, 10(3), 274–286.CrossRefGoogle Scholar
  11. 11.
    Doorly, D. J., Taylor, D. J., & Schroter, R. C. (2008). Mechanics of airflow in the human nasal airways. Respiratory Physiology & Neurobiology, 163(1–3), 100–110.CrossRefGoogle Scholar
  12. 12.
    Riazuddin, V. N., Zubair, M., Abdullah, M. Z., Ismail, R., Shuaib, I. L., Hamid, S. A., et al. (2010). Numerical study of inspiratory and expiratory flow in a human nasal cavity. Journal of Medical and Biological Engineering, 31(3), 201–206.CrossRefGoogle Scholar
  13. 13.
    Weinhold, I., & Mlynski, G. (2004). Numerical simulation of airflow in the human nose. European Archives of Oto-Rhino-Laryngology, 261(8), 452–455.CrossRefGoogle Scholar
  14. 14.
    Zubair, M., Ahmad, K. A., Riazuddin, V. N., Abdullah, M. Z., Rushdan, I., Shuaib, I. L., et al. (2015). Numerical study on the effect of gender on the airflow characteristics inside the nasal cavity. International Journal of Advanced Thermofluid Research, 1(1), 2–16.Google Scholar
  15. 15.
    Wang, D. Y., Lee, H. P., & Gordon, B. R. (2012). Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clinical and Experimental Otorhinolaryngology, 5(4), 181–187.CrossRefGoogle Scholar
  16. 16.
    Zubair, M., Riazuddin, V. N., Abdullah, M. Z., Ismail, R., Shuaib, I. L., Hamid, S. A., et al. (2010). Airflow inside the nasal cavity: Visualisation using computational fluid dynamics. Asian Biomedicine, 4(4), 657–661.CrossRefGoogle Scholar
  17. 17.
    Keyhani, K., Scherer, P. W., & Mozell, M. M. (1995). Numerical simulation of airflow in the human nasal cavity. Journal of Biomechanical Engineering, 117(4), 429–441.CrossRefGoogle Scholar
  18. 18.
    Subramaniam, R. P., Richardson, R. B., Morgan, K. T., Kimbell, J. S., & Guilmette, R. A. (1998). Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicology, 10(2), 91–120.CrossRefGoogle Scholar
  19. 19.
    Kelly, J. T., Prasad, A. K., & Wexler, A. S. (2000). Detailed flow patterns in the nasal cavity. Journal of Applied Physiology, 89(1), 323–337.CrossRefGoogle Scholar
  20. 20.
    Chen, X. B., Lee, H. P., Chong, V. F., & de Wang, Y. (2009). Assessment of septal deviation effects on nasal air flow: A computational fluid dynamics model. Laryngoscope, 119(9), 1730–1736.CrossRefGoogle Scholar
  21. 21.
    Bahmanzadeh, H., Abouali, O., Faramarzi, M., & Ahmadi, G. (2015). Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery. Computers in Biology and Medicine, 61, 8–18.CrossRefGoogle Scholar
  22. 22.
    Kita, S., Oshima, M., Shimazaki, K., Iwai, T., Omura, S., & Ono, T. (2016). Computational fluid dynamic study of nasal respiratory function before and after bimaxillary orthognathic surgery with bone trimming at the inferior edge of the pyriform aperture. Journal of Oral and Maxillofacial Surgery, 74(11), 2241–2251.CrossRefGoogle Scholar
  23. 23.
    Zhu, J. H., Lim, K. M., Thong, K. T., de Wang, Y., & Lee, H. P. (2014). Assessment of airflow ventilation in human nasal cavity and maxillary sinus before and after targeted sinonasal surgery: A numerical case study. Respiratory Physiology & Neurobiology, 194, 29–36.CrossRefGoogle Scholar
  24. 24.
    Taylor, D. J., Doorly, D. J., & Schroter, R. C. (2010). Inflow boundary profile prescription for numerical simulation of nasal airflow. Journal of the Royal Society Interface, 7(44), 515–527.CrossRefGoogle Scholar
  25. 25.
    Bailie, N., Hanna, B., Watterson, J., & Gallagher, G. (2006). An overview of numerical modelling of nasal airflow. Rhinology, 44, 53–57.Google Scholar
  26. 26.
    Gaberino, C., Rhee, J. S., & Garcia, G. J. (2017). Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency. Respiratory Physiology & Neurobiology, 238, 23–32.CrossRefGoogle Scholar
  27. 27.
    Patel, R. G., Garcia, G. J., Frank-Ito, D. O., Kimbell, J. S., & Rhee, J. S. (2015). Simulating the nasal cycle with computational fluid dynamics. Otolaryngology–Head and Neck Surgery, 152(2), 353–360.CrossRefGoogle Scholar
  28. 28.
    Proetz, A. W. (1951). Air currents in the upper respiratory tract and their clinical importance. The Annals of Otology, Rhinology & Laryngology, 60(2), 439–467.CrossRefGoogle Scholar
  29. 29.
    Smith, K. (2008). CFD analysis of pressure and flow characteristics of the human nose. Worcester: Worcester Polytechnic Institute.Google Scholar
  30. 30.
    Campbell, A., Costello, B. J., & Ruiz, R. L. (2010). Cleft lip and palate surgery: An update of clinical outcomes for primary repair. Oral & Maxillofacial Surgery Clinics of North America, 22(1), 43–58.CrossRefGoogle Scholar
  31. 31.
    Garcia, G. J., Bailie, N., Martins, D. A., & Kimbell, J. S. (2007). Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology, 103(3), 1082–1092.CrossRefGoogle Scholar
  32. 32.
    Garcia, G. J., Hariri, B. M., Patel, R. G., & Rhee, J. S. (2016). The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. Journal of Biomechanics, 49(9), 1670–1678.CrossRefGoogle Scholar
  33. 33.
    Wen, J., Inthavong, K., Tu, J., & Wang, S. (2008). Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respiratory Physiology & Neurobiology, 161(2), 125–135.CrossRefGoogle Scholar
  34. 34.
    Leong, S. C., Chen, X. B., Lee, H. P., & Wang, D. Y. (2010). A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology, 48(2), 139–145.Google Scholar
  35. 35.
    Hemtiwakorn, K., Phoocharoen, N., Tungjitkusolmun, S., & Pintavirooj, C. (2009). Nasal airflow simulation in human using computational fluid dynamics. In: Paper presented at the 2nd Biomedical Engineering International Conference (BMEiCON 2009), Phuket.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Kyrin Liong
    • 1
    Email author
  • Eric Gan
    • 1
  • Shujin Lee
    • 2
  • Heow Pueh Lee
    • 1
  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Plastic SurgeryMount Elizabeth Medical CentreSingaporeSingapore

Personalised recommendations