Journal of Medical and Biological Engineering

, Volume 38, Issue 4, pp 625–633 | Cite as

Construction of Brain Structural Connectome Using PROPELLER Echo-Planar Diffusion Tensor Imaging with Probabilistic Tractography: Comparison with Conventional Imaging

  • Ya-Ling Lin
  • Tsyh-Jyi Hsieh
  • Ming-Chung ChouEmail author
Original Article


Brain structural analysis has been widely utilized to investigate brain network alterations caused by diseases. However, susceptibility distortions have been shown to influence tracking results and may detrimentally affect structural connectivity networks. Hence, the purposes of this study were (a) to reduce susceptibility distortions in brain structural networks by using diffusion tensor imaging with PROPELLER echo-planar imaging (pDTI), (b) to compare the differences in brain structural networks between this technique and conventional DTI with single-shot echo-planar imaging (ssDTI), and (c) to investigate sex differences in brain structural networks according to the two techniques. Forty healthy subjects (M/F = 20/20, age = 20–22 y/o) with no history of neurological disease participated in this study. For each participant, the two techniques were utilized to acquire imaging data from a 3.0 T MR scanner. Structural connectivity was statistically compared between these two techniques, as well as between male and female subjects. In connectivity analysis, the pDTI generally had significantly high connectivity between most cortical regions, whereas it exhibited significantly lower connectivity than ssDTI only in regions near the frontal, occipital, and brain stem areas. Furthermore, both techniques revealed consistent sex differences except in regions with susceptibility distortions. We concluded that pDTI might be a suitable alternative technique for investigating alterations in brain structural networks in regions with susceptibility distortions.


Probabilistic tractography PROPELLER EPI pDTI ssDTI Structural connectivity network 


  1. 1.
    Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Mr diffusion tensor spectroscopy and imaging. Biophysical Journal, 66, 259–267.CrossRefGoogle Scholar
  2. 2.
    Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. M. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–269.CrossRefGoogle Scholar
  3. 3.
    Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44, 625–632.CrossRefGoogle Scholar
  4. 4.
    Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., & Thompson, A. (2008). Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurology, 7, 715–727.CrossRefGoogle Scholar
  5. 5.
    Baur, V., Bruhl, A. B., Herwig, U., Eberle, T., Rufer, M., Delsignore, A., et al. (2013). Evidence of frontotemporal structural hypoconnectivity in social anxiety disorder: A quantitative fiber tractography study. Human Brain Mapping, 34, 437–446.CrossRefGoogle Scholar
  6. 6.
    Torgerson, C. M., Irimia, A., Leow, A. D., Bartzokis, G., Moody, T. D., Jennings, R. G., et al. (2013). DTI tractography and white matter fiber tract characteristics in euthymic bipolar I patients and healthy control subjects. Brain Imaging and Behavior, 7, 129–139.CrossRefGoogle Scholar
  7. 7.
    Ashtari, M., Cottone, J., Ardekani, B. A., Cervellione, K., Szeszko, P. R., Wu, J. H., et al. (2007). Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Archives of General Psychiatry, 64, 1270–1280.CrossRefGoogle Scholar
  8. 8.
    Iturria-Medina, Y., Canales-Rodriguez, E. J., Melie-Garcia, L., Valdes-Hernandez, P. A., Martinez-Montes, E., Aleman-Gomez, Y., et al. (2007). Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage, 36, 645–660.CrossRefGoogle Scholar
  9. 9.
    Iturria-Medina, Y., Sotero, R. C., Canales-Rodriguez, E. J., Aleman-Gomez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage, 40, 1064–1076.CrossRefGoogle Scholar
  10. 10.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, 1479–1493.CrossRefGoogle Scholar
  11. 11.
    Gong, G. L., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19, 524–536.CrossRefGoogle Scholar
  12. 12.
    Rose, S., Pannek, K., Bell, C., Baumann, F., Hutchinson, N., Coulthard, A., et al. (2012). Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: An automated MRI structural connectivity study. Neuroimage, 59, 2661–2669.CrossRefGoogle Scholar
  13. 13.
    Verstraete, E., Veldink, J. H., van den Berg, L. H., & van den Heuvel, M. P. (2014). Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Human Brain Mapping, 35, 1351–1361.CrossRefGoogle Scholar
  14. 14.
    Agosta, F., Galantucci, S., Riva, N., Chio, A., Messina, S., Iannaccone, S., et al. (2014). Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Human Brain Mapping, 35, 1710–1722.CrossRefGoogle Scholar
  15. 15.
    Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure & Function, 213, 93–118.CrossRefGoogle Scholar
  16. 16.
    Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., Heuvel, M. P. V. D., Hedman, A. M., Hert, M. D., et al. (2016). Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry, 73, 11–19.CrossRefGoogle Scholar
  17. 17.
    Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Reviews Neuroscience, 16, 159–172.CrossRefGoogle Scholar
  18. 18.
    Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E. L., Thompson, P. M., et al. (2013). Altered functional and structural brain network organization in autism. Neuroimage-Clinical, 2, 79–94.CrossRefGoogle Scholar
  19. 19.
    Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., et al. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE, 2(7), e597.CrossRefGoogle Scholar
  20. 20.
    Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34, 144–155.CrossRefGoogle Scholar
  21. 21.
    Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test-retest reliability of structural brain networks from diffusion MRI. Neuroimage, 86, 231–243.CrossRefGoogle Scholar
  22. 22.
    Irfanoglu, M. O., Walker, L., Sarlls, J., Marenco, S., & Pierpaoli, C. (2012). Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage, 61, 275–288.CrossRefGoogle Scholar
  23. 23.
    Embleton, K. V., Haroon, H. A., Morris, D. M., Ralph, M. A. L., & Parker, G. J. M. (2010). Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Human Brain Mapping, 31, 1570–1587.CrossRefGoogle Scholar
  24. 24.
    Bammer, R., Auer, M., Keeling, S. L., Augustin, M., Stables, L. A., Prokesch, R. W., et al. (2002). Diffusion tensor imaging using single-shot SENSE-EPI. Magnetic Resonance in Medicine, 48, 128–136.CrossRefGoogle Scholar
  25. 25.
    Jaermann, T., Crelier, G., Pruessmann, K. P., Golay, X., Netsch, T., van Muiswinkel, A. M. C., et al. (2004). Sense-Dti at 3 T. Magnetic Resonance in Medicine, 51, 230–236.CrossRefGoogle Scholar
  26. 26.
    Chou, M. C., Wang, C. Y., Liu, H. S., Chung, H. W., & Chen, C. Y. (2007). Pseudolesions arising from unfolding artifacts in diffusion imaging with use of parallel acquisition: Origin and remedies. American Journal of Neuroradiology, 28, 1099–1101.CrossRefGoogle Scholar
  27. 27.
    Wang, F. N., Huang, T. Y., Lin, F. H., Chuang, T. C., Chen, N. K., Chung, H. W., et al. (2005). PROPELLER EPI: An MRI technique suitable for diffusion tensor Imaging at high field strength with reduced geometric distortions. Magnetic Resonance in Medicine, 54, 1232–1240.CrossRefGoogle Scholar
  28. 28.
    Skare, S., Newbould, R. D., Clayton, D. B., & Bammer, R. (2006). Propeller EPI in the other direction. Magnetic Resonance in Medicine, 55, 1298–1307.CrossRefGoogle Scholar
  29. 29.
    Chuang, T. C., Huang, T. Y., Lin, F. H., Wang, F. N., Juan, C. J., Chung, H. W., et al. (2006). PROPELLER-EPI with parallel imaging using a circularly symmetric phased-array RF coil at 3.0 T: Application to high-resolution diffusion tensor imaging. Magnetic Resonance in Medicine, 56, 1352–1358.CrossRefGoogle Scholar
  30. 30.
    Skare, S., Newbould, R., Clayton, D., & Bammer, R. (2006). Diffusion Imaging using MinD SAP-EPI. In: Proceedings 14th Scientific Meeting International Society for Magnetic Resonance in Medicine, p. 857.Google Scholar
  31. 31.
    Chou, M. C., Huang, T. Y., Chung, H. W., Hsieh, T. J., Chang, H. C., & Chen, C. Y. (2013). Q-ball imaging with PROPELLER EPI acquisition. NMR in Biomedicine, 26, 1723–1732.CrossRefGoogle Scholar
  32. 32.
    Forde, N. J., O’Donoghue, S., Scanlon, C., Emsell, L., Chaddock, C., Leemans, A., et al. (2015). Structural brain network analysis in families multiply affected with bipolar I disorder. Psychiatry Research-Neuroimaging, 234, 44–51.CrossRefGoogle Scholar
  33. 33.
    Kim, H., Kim, J., Loggia, M. L., Cahalan, C., Garcia, R. G., Vangel, M. G., et al. (2015). Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks. NeuroImage: Clinical, 7, 667–677.CrossRefGoogle Scholar
  34. 34.
    Lo, C. Y., Wang, P. N., Chou, K. H., Wang, J. H., He, Y., & Lin, C. P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. Journal of Neuroscience, 30, 16876–16885.CrossRefGoogle Scholar
  35. 35.
    Jones, D. K., Horsfield, M. A., & Simmons, A. (1999). Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine, 42, 515–525.CrossRefGoogle Scholar
  36. 36.
    Skare, S., Hedehus, M., Moseley, M. E., & Li, T. Q. (2000). Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. Journal of Magnetic Resonance, 147, 340–352.CrossRefGoogle Scholar
  37. 37.
    Holland, D., Kuperman, J. M., & Dale, A. M. (2010). Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. Neuroimage, 50, 175–183.CrossRefGoogle Scholar
  38. 38.
    Zhan, L., Franc, D., Patel, V., Jahanshad, N., Jin, Y., Mueller, B. A., et al. (2016). How do spatial and angular resolution affect brain connectivity maps from diffusion MRI?. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 1–6.Google Scholar
  39. 39.
    Andersson, J. L., Richter, M. C., Richter, W., Skare, S., Nunes, R. G., Robson, M. D., et al. (2004). Effects of susceptibility distortions on tractography. In: Proceedings 12th Scientific Meeting International Society for Magnetic Resonance in Medicine, p. 87.Google Scholar
  40. 40.
    Esteban, O., Daducci, A., Caruyer, E., O’Brien, K., Ledesma-Carbayo, M. J., Bach-Cuadra, M., et al. (2014). Simulation-based evaluation of susceptibility distortion correction methods in diffusion MRI for connectivity analysis. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 738–741.Google Scholar
  41. 41.
    Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., et al. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National academy of Sciences of the United States of America, 111, 823–828.CrossRefGoogle Scholar
  42. 42.
    Sun, Y., Lee, R., Chen, Y., Collinson, S., Thakor, N., Bezerianos, A., et al. (2015). Progressive gender differences of structural brain networks in healthy adults: A longitudinal. Diffusion Tensor Imaging Study. Plos One, 10(3), e0118857.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Ya-Ling Lin
    • 1
  • Tsyh-Jyi Hsieh
    • 2
    • 3
    • 4
    • 5
  • Ming-Chung Chou
    • 2
    • 6
    Email author
  1. 1.Department of Radiation OncologyKaohsiung Municipal Ta-Tung HospitalKaohsiungTaiwan
  2. 2.Department of Medical Imaging and Radiological Sciences, College of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Faculty of Medicine, School of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of Medical ImagingKaohsiung Medical University HospitalKaohsiungTaiwan
  5. 5.Department of RadiologyChi-Mei Medical CenterTainanTaiwan
  6. 6.Department of Medical ResearchesKaohsiung Medical University HospitalKaohsiungTaiwan

Personalised recommendations