A Novel Methodology for Bio-electrospraying Mesenchymal Stem Cells that Maintains Differentiation, Immunomodulatory and Pro-reparative Functions

  • Zita McCrea
  • Yonsuang Arnanthigo
  • Sally-Ann Cryan
  • Shirley O’DeaEmail author
Original Article


Mesenchymal stem cells (MSCs) are an important cell source for tissue engineering (TE) and cell therapies for several reasons including ease of isolation from multiple tissues, uncomplicated ex vivo culture, ability to self-renew and differentiate into numerous cell types, MSC/immune cell interactions and pro-reparative properties. Current MSC therapies involve administration via intravenous (I.V.) injection. However, this can result in MSC entrapment and failure to target injured site. In TE, artificial 3D constructs are being investigated as strategies for direct delivery of MSCs to a target area. However, these constructs have numerous limitations including lack of cell infiltration, poor cell functionality and limited diffusion of nutrients and oxygen through the scaffolds. We are investigating the jetting methodology bio-electrospraying (BES) as an alternative strategy for MSCs delivery in vivo that may overcome obstacles associated with I.V. injections and scaffold transplantation. For BES in vivo, low voltages, stable jetting and a single needle configuration are highly desirable. A commercially available electrospray apparatus Spraybase® was used to electrospray mouse bone marrow-derived MSCs (mBMSCs) at low voltages (~ 3–6 kV) in vitro. Stable jetting conditions with a single needle at these low voltages were established by employing a ring-shape electrode for potential difference, specific culture medium and the use of high mBMSCs numbers to overcome viscosity difficulties. The viability and functionality of the mBMSCs following BES was determined by analysing expression of specific surface markers, multilineage differentiation, suppression of T- cell activation and pro-reparative capabilities. We show that mBMSCs post-BES functioned similarly to non-bio-electrospray (non-BES) control mBMSCs for all parameters examined. This methodology may subsequently enable targeted delivery of MSCs to an injury site in vivo and potentially avoid the complications associated with MSCs entrapment and the limitations associated with artificial scaffolds.


Bio-electrospraying Mesenchymal stromal/stem cells Cell delivery Tissue engineering Cell therapies Bone marrow stem cells 



This work was funded by the HEA under PRTLI5 and by EU FP7 Marie Cuire IAPP and is being co-funded by the Irish Government and the EU under Ireland’s Structural Funds Programmes 2007–2013: Investing in your future.


SAC funded under SFI Grant 13/IA/1840.


  1. 1.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRefGoogle Scholar
  2. 2.
    Ding, Y. C., Xu, D. M., Feng, G., Bushell, A., Muschel, R. J., & Wood, K. J. (2009). Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes, 58(8), 1797–1806.CrossRefGoogle Scholar
  3. 3.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.CrossRefGoogle Scholar
  4. 4.
    Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology. doi: 10.3389/fimmu.2012.00297.eCollection.Google Scholar
  5. 5.
    English, K., French, A., & Wood, K. J. (2010). Mesenchymal stromal cells: Facilitators of successful transplantation? Cell Stem Cell, 7(4), 431–442.CrossRefGoogle Scholar
  6. 6.
    McKernan, R., McNeish, J., & Smith, D. (2010). Pharma’s developing interest in stem cells. Cell Stem Cell, 6(6), 517–520.CrossRefGoogle Scholar
  7. 7.
    Schu, S., Nosov, M., O’Flynn, L., Shaw, G., Treacy, O., Barry, F., et al. (2012). Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 16(9), 2094–2103.CrossRefGoogle Scholar
  8. 8.
    Nystedt, J., Anderson, H., Tikkanen, J., Pietilä, M., Hirvonen, T., Takalo, R., et al. (2013). Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells, 31(2), 317–326.CrossRefGoogle Scholar
  9. 9.
    Plock, J. A., Schnider, J. T., Schweizer, R., & Gorantla, V. S. (2013). Are cultured mesenchymal stromal cells an option for immunomodulation in transplantation? Frontiers in Immunology. doi: 10.3389/fimmu.2013.00041.eCollection.Google Scholar
  10. 10.
    Ji, W., Sun, Y., Yang, F., van den Beucken, J. J. J. P., Fan, M. W., Chen, Z., et al. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research, 28(6), 1259–1272.CrossRefGoogle Scholar
  11. 11.
    Kai, D., Jin, G., Prabhakaran, M. P., & Ramakrishna, S. (2013). Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnology Journal, 8(1), 59–72.CrossRefGoogle Scholar
  12. 12.
    Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., & Juncker, D. (2013). Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 31(5), 669–687.CrossRefGoogle Scholar
  13. 13.
    Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering. doi: 10.1177/2041731412443530.Google Scholar
  14. 14.
    Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603–5621.CrossRefGoogle Scholar
  15. 15.
    Lee, S. H., & Shin, H. (2007). Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 59(4–5), 339–359.CrossRefGoogle Scholar
  16. 16.
    Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.CrossRefGoogle Scholar
  17. 17.
    Rim, N. G., Shin, C. S., & Shin, H. (2013). Current approaches to electrospun nanofibers for tissue engineering. Biomedical Materials, 8(1), 014102.CrossRefGoogle Scholar
  18. 18.
    Taylor, G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society A, 280(1382), 383–397.CrossRefzbMATHGoogle Scholar
  19. 19.
    Jayasingh, S. N., Qureshi, A. N., & Eagles, P. A. M. (2006). Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small (Weinheim an der Bergstrasse, Germany), 2(2), 216–219.CrossRefGoogle Scholar
  20. 20.
    Jayasinghe, S. N., Eagles, P. A. M., & Qureshi, A. N. (2006). Electric field driven jetting: An emerging approach for processing living cells. Biotechnology Journal, 1(1), 86–94.CrossRefGoogle Scholar
  21. 21.
    Jayasinghe, S. N. (2011). Bio-electrosprays: From bio-analytics to a generic tool for the health sciences. Analyst, 136(5), 878–890.CrossRefGoogle Scholar
  22. 22.
    Salata, O. V. (2005). Tools of nanotechnology: Electrospray. Current Nanoscience, 1(1), 25–33.CrossRefGoogle Scholar
  23. 23.
    Ng, K. E., Joly, P., Jayasinghe, S. N., Vernay, B., Knight, R., Barry, S. P., et al. (2011). Bio-electrospraying primary cardiac cells: In vitro tissue creation and functional study. Biotechnology Journal, 6(1), 86–95.CrossRefGoogle Scholar
  24. 24.
    Sahoo, S., Lee, W. C., Goh, J. C., & Toh, S. L. (2010). Bio-electrospraying: A potentially safe technique for delivering progenitor cells. Biotechnology and Bioengineering, 106(4), 690–698.CrossRefGoogle Scholar
  25. 25.
    Bartolovic, K., Mongkoldhumrongkul, N., Waddington, S. N., Jayasinghe, S. N., & Howe, S. J. (2010). The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray. Analyst, 135(1), 157–164.CrossRefGoogle Scholar
  26. 26.
    Abeyewickreme, A., Kwok, A., McEwan, J. R., & Jayasinghe, S. N. (2009). Bio-electrospraying embryonic stem cells: Interrogating cellular viability and pluripotency. Integrative Biology: Quantitative Biosciences From Nano to Macro, 1(3), 260–266.CrossRefGoogle Scholar
  27. 27.
    Guan, J., Wang, F., Li, Z., Chen, J., Guo, X., Liao, J., et al. (2011). The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials, 32(24), 5568–5580.CrossRefGoogle Scholar
  28. 28.
    Ye, C., He, Z., Lin, Y., Zhang, Y., Tang, J., Sun, B., et al. (2014). Bio-electrospraying is a safe technology for delivering human adipose-derived stem cells. Biotechnology Letters, 37(2), 449–456.CrossRefGoogle Scholar
  29. 29.
    Rulison, A. J., & Flagan, R. C. (1994). Electrospray atomization of electrolytic solutions. Journal of Colloid Interface Science, 167(1), 135–145.CrossRefGoogle Scholar
  30. 30.
    Kim, G., Park, J., & Han, H. (2006). Production of microsized PMMA droplets using electrospraying with various auxiliary fields. Journal of Colloid Interface Science, 299(2), 593–598.CrossRefGoogle Scholar
  31. 31.
    Hartman, R. P. A., Brunner, D. J., Camelot, D. M. A., Marijnissen, J. C. M., & Scarlett, B. (2000). Jet break-up in electrohydrodynamic atomization in the cone-jet mode. Journal of Aerosol Science, 31(1), 65–95.CrossRefGoogle Scholar
  32. 32.
    Odenwalder, P., Irvine, S., McEwan, J. R., & Jayasing, S. N. (2007). Bio-electrosprays: A novel electrified jetting methodology for the safe handling and deployment of primary living organisms. Biotechnology Journal, 2(5), 622–630.CrossRefGoogle Scholar
  33. 33.
    Peister, A., Mellad, J. A., Larson, B. L., Hall, B. M., Gibson, L. F., & Prockop, D. J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 103(5), 1662–1668.CrossRefGoogle Scholar
  34. 34.
    English, K., Barry, F. P., Field-Corbett, C. P., & Mahon, B. P. (2007). IFN-gamma and TNFalpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunology Letters, 110(2), 91–100.CrossRefGoogle Scholar
  35. 35.
    Quah, B. J. C., & Parish, C. (2012). New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. Journal of Immunological Methods, 379(1–2), 1–14.CrossRefGoogle Scholar
  36. 36.
    Ho, S. Y., & Mittal, G. S. (1996). Electroporation of cell membranes: A review. Critical Reviews in Biotechnology, 16(4), 349–362.CrossRefGoogle Scholar
  37. 37.
    DeBruin, K. A., & Krassowska, W. (1999). Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophysical Journal, 77(3), 1213–1224.CrossRefGoogle Scholar
  38. 38.
    Gass, G. V., & Chernomordik, L. V. (1990). Reversible large-scale deformations in the membranes of electrically-treated cells: Electroinduced bleb formation. Biochimica et Biophysica Acta, 1023(1), 1–11.CrossRefGoogle Scholar
  39. 39.
    Chen, W., Han, Y., Chen, Y., & Xie, J. T. (1998). Field-induced electroconformational damages in cell membrane proteins: A new mechanism involved in electrical injury. Bioelectrochemistry and Bioenergetics, 47(2), 237–245.CrossRefGoogle Scholar
  40. 40.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefGoogle Scholar
  41. 41.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.CrossRefGoogle Scholar
  42. 42.
    Glennie, S., Soeir, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.CrossRefGoogle Scholar
  43. 43.
    Dwyer, J. M., & Johnson, C. (1981). The use of concanavalin A to study the immunoregulation of human T cells. Clinical and Experimental Immunology, 46(2), 237–249.Google Scholar
  44. 44.
    Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE. doi: 10.1371/journal.pone.0001886.eJournal.Google Scholar
  45. 45.
    Karp, J. M., & Leng Teo, G. S. (2009). Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell, 4(3), 206–216.CrossRefGoogle Scholar
  46. 46.
    Syed, B. A., & Evans, J. B. (2013). From the analyst’s couch stem cell therapy market. Nature Reviews Drug Discovery, 12(1), 185–186.CrossRefGoogle Scholar
  47. 47.
    Hayat, M. A. (2012). Therapeutic applications in disease and injury. Stem Cells and Cancer Stem Cells. doi: 10.1007/978-94-007-2993-3.eBook.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Zita McCrea
    • 1
  • Yonsuang Arnanthigo
    • 1
  • Sally-Ann Cryan
    • 2
    • 3
    • 4
    • 5
  • Shirley O’Dea
    • 1
    • 6
    Email author
  1. 1.Biology DepartmentMaynooth UniversityMaynoothIreland
  2. 2.Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublin 2Ireland
  3. 3.Trinity Centre for BioengineeringTrinity College DublinDublin 2Ireland
  4. 4.School of PharmacyRoyal College of Surgeons in IrelandDublin 2Ireland
  5. 5.Centre for Research in Medical Devices (CÚRAM)National University of Ireland GalwayGalwayIreland
  6. 6.AvectasDublinIreland

Personalised recommendations