Journal of Medical and Biological Engineering

, Volume 38, Issue 4, pp 534–543 | Cite as

Control of the Motions of the Body’s Center of Mass and End-Points of the Lower Limbs in Patients with Mild Parkinson’s Disease During Obstacle-Crossing

  • Yen-Hung Liu
  • Mei-Ying Kuo
  • Ruey-Meei Wu
  • Zhi-You Chen
  • Tung-Wu LuEmail author
Original Article


Neuromuscular impairments in Parkinson’s disease (PD) alter the mechanics and control of the body, leading to an increased risk of falling during more challenging functional tasks such as obstacle-crossing. However, little is known about these changes. The current study aimed to bridge the gap by quantifying the motion of the body’s center of mass (COM) relative to the center of pressure (COP) in terms of COM-COP inclination angles (IA) and their rate of change (RCIA) in fifteen older adults with mild PD and fifteen healthy controls when crossing obstacles of heights of 10, 20 and 30% leg length. There were no between-group differences for either the leading or trailing toe clearances (p > 0.05). With the unaffected limb leading, the PD subjects significantly increased the crossing sagittal and frontal IA, crossing sagittal RCIA, the peak RCIA, and average sagittal and frontal RCIAs during double-limb support for all obstacle heights when compared to those with the affected limb leading and those of the Controls (p < 0.05). The poor balance control in the mediolateral direction during obstacle-crossing in PD indicated an increased risk of falling. The differences in the crossing patterns between leading with the affected or unaffected limb suggest that patients with PD should lead with the affected limb when crossing obstacles. The current findings suggest that early dynamic balance training is important in the management of patients with PD.


Parkinson’s disease Obstacle-crossing Balance Gait analysis 



The authors are grateful for the financial support from the National Science Council, Taiwan (NSC 98-2320-B-002-005-MY3). The assistance in data collection provided by Drs Chu-Fen Chang and Sheng-Chang Chen is also greatly appreciated.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fung, H. C., Chen, C. M., Hardy, J., Singleton, A. B., Lee-Chen, G. J., & Wu, Y. R. (2006). Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience Letters, 394(1), 33–36.CrossRefGoogle Scholar
  2. 2.
    Melton, L. J., Leibson, C. L., Achenbach, S. J., Bower, J. H., Maraganore, D. M., Oberg, A. L., et al. (2006). Fracture risk after the diagnosis of Parkinson’s disease: influence of concomitant dementia. Movement Disorders, 21(9), 1361–1367.CrossRefGoogle Scholar
  3. 3.
    Mortimer, J. A., Pirozzolo, F. J., Hansch, E. C., & Webster, D. D. (1982). Relationship of motor symptoms to intellectual deficits in Parkinson disease. Neurology, 32(2), 133–133.CrossRefGoogle Scholar
  4. 4.
    Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRefGoogle Scholar
  5. 5.
    McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 62(1), 22–26.CrossRefGoogle Scholar
  6. 6.
    Carpenter, M., Allum, J., Honegger, F., Adkin, A., & Bloem, B. (2004). Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75(9), 1245–1254.CrossRefGoogle Scholar
  7. 7.
    Alexander, B. H., Rivara, F. P., & Wolf, M. E. (1992). The cost and frequency of hospitalization for fall-related injuries in older adults. American Journal of Public Health, 82(7), 1020–1023.CrossRefGoogle Scholar
  8. 8.
    Dibble, L. E., & Lange, M. (2006). Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures. Journal of Neurologic Physical Therapy, 30(2), 60–67. doi: 10.1097/1001.NPT.0000282569.0000270920.dc.CrossRefGoogle Scholar
  9. 9.
    Nieuwboer, A., Chavret, F., Willems, A. M., & Desloovere, K. (2007). Does freezing in Parkinson’s disease change limb coordination? Journal of Neurology, 254(9), 1268–1277.CrossRefGoogle Scholar
  10. 10.
    Roiz, Rd M, Cacho, E. W. A., Pazinatto, M. M., Reis, J. G., Cliquet, A., Jr., & Barasnevicius-Quagliato, E. (2010). Gait analysis comparing Parkinson’s disease with healthy elderly subjects. Arquivos de Neuro-Psiquiatria, 68(1), 81–86.CrossRefGoogle Scholar
  11. 11.
    Ebersbach, G., Moreau, C., Gandor, F., Defebvre, L., & Devos, D. (2013). Clinical syndromes: Parkinsonian gait. Movement Disorders, 28(11), 1552–1559.CrossRefGoogle Scholar
  12. 12.
    Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.CrossRefGoogle Scholar
  13. 13.
    Lockhart, P. J., Bounds, R., Hulihan, M., Kachergus, J., Lincoln, S., Lin, C. H., et al. (2004). Lack of mutations in DJ-1 in a cohort of Taiwanese ethnic Chinese with early-onset parkinsonism. Movement Disorders, 19(9), 1065–1069.CrossRefGoogle Scholar
  14. 14.
    Lewek, M. D., Poole, R., Johnson, J., Halawa, O., & Huang, X. (2010). Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease. Gait & Posture, 31(2), 256–260.CrossRefGoogle Scholar
  15. 15.
    Rogers, M. W. (1996). Disorders of posture, balance, and gait in Parkinson’s disease. Clinics in Geriatric Medicine, 12(4), 825–845.Google Scholar
  16. 16.
    Bloem, B. R., Grimbergen, Y. A., Cramer, M., Willemsen, M., & Zwinderman, A. H. (2001). Prospective assessment of falls in Parkinson’s disease. Journal of Neurology, 248(11), 950–958.CrossRefGoogle Scholar
  17. 17.
    Vitório, R., Pieruccini-Faria, F., Stella, F., Gobbi, S., & Gobbi, L. T. B. (2010). Effects of obstacle height on obstacle crossing in mild Parkinson’s disease. Gait & Posture, 31(1), 143–146.CrossRefGoogle Scholar
  18. 18.
    Stegemöller, E. L., Buckley, T. A., Pitsikoulis, C., Barthelemy, E., Roemmich, R., & Hass, C. J. (2012). Postural instability and gait impairment during obstacle crossing in Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 93(4), 703–709.CrossRefGoogle Scholar
  19. 19.
    Blake, A. J., Morgan, K., Bendall, M., Dallosso, H., Ebrahim, S., Arie, T., et al. (1988). Falls by elderly people at home: prevalence and associated factors. Age and Ageing, 17(6), 365–372.CrossRefGoogle Scholar
  20. 20.
    Hoyert, D. L., Arias, E., Smith, B. L., Murphy, S. L., & Kochanek, K. D. (2001). Deaths: final data for 1999. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 49(8), 1–113.Google Scholar
  21. 21.
    Pandya, N. K., Draganich, L. F., Mauer, A., Piotrowski, G. A., & Pottenger, L. (2005). Osteoarthritis of the knees increases the propensity to trip on an obstacle. Clinical Orthopaedics and Related Research, 431, 150–156.CrossRefGoogle Scholar
  22. 22.
    Lu, T. W., Chen, H. L., & Chen, S. C. (2006). Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait & Posture, 23(4), 471–479.CrossRefGoogle Scholar
  23. 23.
    Dietz, V., & Michel, J. (2008). Locomotion in Parkinson’s disease: neuronal coupling of upper and lower limbs. Brain, 131(12), 3421–3431.CrossRefGoogle Scholar
  24. 24.
    Patla, A. (1990). Assessment of balance control in the elderly: major issues. Physiotherapy Canada, 42(2), 89–97.CrossRefGoogle Scholar
  25. 25.
    Kuo, A. D. (1995). An optimal control model for analyzing human postural balance. IEEE Transactions on Biomedical Engineering, 42(1), 87–101.CrossRefGoogle Scholar
  26. 26.
    Patla, A. E. (2003). Strategies for dynamic stability during adaptive human locomotion. IEEE Engineering in Medicine and Biology Magazine, 22(2), 48–52.CrossRefGoogle Scholar
  27. 27.
    Lee, H. J., & Chou, L. S. (2006). Detection of gait instability using the center of mass and center of pressure inclination angles. Archives of Physical Medicine and Rehabilitation, 87(4), 569–575.CrossRefGoogle Scholar
  28. 28.
    Hsu, W. C., Wang, T. M., Liu, M. W., Chang, C. F., Chen, H. L., & Lu, T. W. (2010). Control of body’s center of mass motion during level walking and obstacle-crossing in older patients with knee osteoarthritis. Journal of Mechanics, 26(02), 229–237.CrossRefGoogle Scholar
  29. 29.
    Huang, S. C., Wei, I. P., Chien, H. L., Wang, T. M., Liu, Y. H., Chen, H. L., et al. (2008). Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Medical Engineering & Physics, 30(8), 997–1003.CrossRefGoogle Scholar
  30. 30.
    Chien, H. L., Lu, T. W., & Liu, M. W. (2013). Control of the motion of the body’s center of mass in relation to the center of pressure during high-heeled gait. Gait & Posture, 38(3), 391–396.CrossRefGoogle Scholar
  31. 31.
    Pai, Y. C., & Patton, J. (1997). Center of mass velocity-position predictions for balance control. Journal of Biomechanics, 30, 347–354.CrossRefGoogle Scholar
  32. 32.
    Lu, T. W., Chen, H. L., & Wang, T. M. (2007). Obstacle crossing in older adults with medial compartment knee osteoarthritis. Gait & Posture, 26(4), 553–559.CrossRefGoogle Scholar
  33. 33.
    Dempster, W. T., Gabel, W. C., & Felts, W. J. (1959). The anthropometry of the manual work space for the seated subject. American Journal of Physical Anthropology, 17(4), 289–317.CrossRefGoogle Scholar
  34. 34.
    Lu, T. W., Chien, H. L., & Chen, H. L. (2007). Joint loading in the lower extremities during elliptical exercise. Medicine and Science in Sports and Exercise, 39(9), 1651.CrossRefGoogle Scholar
  35. 35.
    Hsieh, H. J., Lu, T. W., Chen, S. C., Chang, C. M., & Hung, C. (2011). A new device for in situ static and dynamic calibration of force platforms. Gait & Posture, 33(4), 701–705.CrossRefGoogle Scholar
  36. 36.
    Huang, S. C., Lu, T. W., Chen, H. L., Wang, T. M., & Chou, L. S. (2008). Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Medical Engineering & Physics, 30(8), 968–975.CrossRefGoogle Scholar
  37. 37.
    Woltring, H. J. ((1986)). A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Advances in Engineering Software (1978), 8(2), 104–113.CrossRefGoogle Scholar
  38. 38.
    Morris, M., Iansek, R., McGinley, J., Matyas, T., & Huxham, F. (2005). Three-dimensional gait biomechanics in Parkinson’s disease: Evidence for a centrally mediated amplitude regulation disorder. Movement Disorders, 20(1), 40–50.CrossRefGoogle Scholar
  39. 39.
    Konczak, J., Corcos, D. M., Horak, F., Poizner, H., Shapiro, M., Tuite, P., et al. (2009). Proprioception and motor control in Parkinson’s disease. Journal of Motor Behavior, 41(6), 543–552.CrossRefGoogle Scholar
  40. 40.
    Galna, B., Murphy, A. T., & Morris, M. E. (2010). Obstacle crossing in people with Parkinson’s disease: foot clearance and spatiotemporal deficits. Human Movement Science, 29(5), 843–852.CrossRefGoogle Scholar
  41. 41.
    Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRefGoogle Scholar
  42. 42.
    Chou, L. S., Kaufman, K. R., Hahn, M. E., & Brey, R. H. (2003). Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait & Posture, 18(3), 125–133.CrossRefGoogle Scholar
  43. 43.
    Jacobs, J., & Horak, F. (2006). Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson’s disease. Neuroscience, 141(2), 999–1009.CrossRefGoogle Scholar
  44. 44.
    Chen, H. L., & Lu, T. W. (2006). Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles. Gait & Posture, 23(1), 69–77.CrossRefGoogle Scholar
  45. 45.
    Frank, J., Horak, F., & Nutt, J. (2000). Centrally initiated postural adjustments in parkinsonian patients on and off levodopa. Journal of Neurophysiology, 84(5), 2440–2448.CrossRefGoogle Scholar
  46. 46.
    Stolwyk, R. J., Triggs, T. J., Charlton, J. L., Moss, S., Iansek, R., & Bradshaw, J. L. (2006). Effect of a concurrent task on driving performance in people with Parkinson’s disease. Movement Disorders, 21(12), 2096–2100.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Yen-Hung Liu
    • 1
    • 2
  • Mei-Ying Kuo
    • 3
  • Ruey-Meei Wu
    • 4
  • Zhi-You Chen
    • 1
  • Tung-Wu Lu
    • 1
    • 5
    Email author
  1. 1.Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC
  2. 2.Department of Physical TherapyTzu-Hui Institute of TechnologyPingtungTaiwan, ROC
  3. 3.Department of Physical TherapyChina Medical UniversityTaichungTaiwan, ROC
  4. 4.Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan, ROC
  5. 5.Department of Orthopaedic Surgery, School of MedicineNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations