Prototype Deep Brain Stimulation System with Closed-Loop Control Feedback for Modulating Bladder Functions in Traumatic Brain Injured Animals

  • En Jen
  • Chii-Wann Lin
  • Tsung-Hsun Hsieh
  • Yi-Chun Chiu
  • Tsung-Che Lu
  • Shih-Ching Chen
  • Meng-Chao Chen
  • Chih-Wei PengEmail author
Original Article


Traumatic brain injury (TBI) typically causes permanent brain tissue damage, which leads to permanent severe voiding dysfunction. Urinary retention is often refractory to standard therapies, and most patients require self-catheterization, which results in frequent urinary tract infections and reduces quality of life. Deep brain stimulation (DBS) might be a feasible alternative approach for treating bladder disorders in patients with TBI. In this study, we developed a DBS system with a closed-loop control strategy and determined the feasibility of this DBS system for improving bladder voiding function in a TBI animal model. A prototype of the DBS system was designed, fabricated and integrated with a closed-loop control algorithm based on the real-time external urethral sphincter-electromyogram feedback. A series of animal experiments was conducted to determine whether the feedback algorithm accurately detects the bladder status during cystometric measurements. Subsequent animal experiments were conducted to implement this DBS system and determine the performance of the closed-loop strategy for improving bladder functions in the TBI animal model. We successfully implemented a closed-loop algorithm for DBS control, and the accuracy of the bladder voiding phase detection was > 90%. Our system significantly improved the voiding efficiency in TBI rats from 22 to 74%. Although the prototype of the DBS feedback system was fabricated with surface-mounted device components and mounted on a 3D printed circuit board, the design principles and animal experience gathered from this research can serve as a basis for developing a new implantable bladder controller in the future.


Traumatic brain injury Urinary retention Deep brain stimulation Electromyogram Closed-loop 



This study was supported by grants from the Ministry of Science and Technology (MOST106-2221-E-038-010-MY3, MOST103-2221-E-038-007-MY3, and NSC 102-2320-B-002-040 -MY2) and by the R&D Foundation of Urological Medicine, Taiwan. The authors also thank Professors Te-Son Kuo and Shuenn-Tsong Young for their outstanding technical support.


  1. 1.
    Faul, M., Xu, L., Wald, M. M., & Coronado, V. (2010). Traumatic brain injury in the United States. Atlanta, GA: National Center for injury Prevention and Control, Centers for disease Control and Prevention.Google Scholar
  2. 2.
    Prins, M., Greco, T., Alexander, D., & Giza, C. C. (2013). The pathophysiology of traumatic brain injury at a glance. Disease Models and Mechanisms, 6(6), 1307–1315.CrossRefGoogle Scholar
  3. 3.
    Maas, A. I., Stocchetti, N., & Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 7(8), 728–741.CrossRefGoogle Scholar
  4. 4.
    Burks, F. N., Bui, D. T., & Peters, K. M. (2010). Neuromodulation and the neurogenic bladder. Urologic Clinics of North America, 37(4), 559–565.CrossRefGoogle Scholar
  5. 5.
    Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: A disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540.CrossRefGoogle Scholar
  6. 6.
    Oostra, K., Everaert, K., & Van Laere, M. (1996). Urinary incontinence in brain injury. Brain Injury, 10(6), 459–464.CrossRefGoogle Scholar
  7. 7.
    Moiyadi, A. V., Devi, B. I., & Nair, K. (2007). Urinary disturbances following traumatic brain injury: Clinical and urodynamic evaluation. NeuroRehabilitation, 22(2), 93–98.Google Scholar
  8. 8.
    Moody, B. J., Liberman, C., Zvara, P., Smith, P. P., Freeman, K., & Zvarova, K. (2014). Acute lower urinary tract dysfunction (LUTD) following traumatic brain injury (TBI) in rats. Neurourology and Urodynamics, 33(7), 1159–1164.CrossRefGoogle Scholar
  9. 9.
    Aboseif, S., Tamaddon, K., Chalfin, S., Freedman, S., Mourad, M., Chang, J., et al. (2002). Sacral neuromodulation in functional urinary retention: An effective way to restore voiding. BJU International, 90(7), 662–665.CrossRefGoogle Scholar
  10. 10.
    Lin, Y.-T., Lai, C.-H., Kuo, T.-S., Chen, C.-C., Chen, Y.-L., Young, S.-T., et al. (2014). Dual-channel neuromodulation of pudendal nerve with closed-loop control strategy to improve bladder functions. J Med Biol Eng, 34(34), 82–89.CrossRefGoogle Scholar
  11. 11.
    Abd-Elfattah Foda, M. A., & Marmarou, A. (1994). A new model of diffuse brain injury in rats: Part II: Morphological characterization. Journal of Neurosurgery, 80(2), 301–313.CrossRefGoogle Scholar
  12. 12.
    Marmarou, A., Foda, M. A. A.-E., Brink, W. V. D., Campbell, J., Kita, H., & Demetriadou, K. (1994). A new model of diffuse brain injury in rats: Part I: Pathophysiology and biomechanics. Journal of Neurosurgery, 80(2), 291–300.CrossRefGoogle Scholar
  13. 13.
    Hsieh, T.-H., Huang, Y.-Z., Chen, J.-J. J., Rotenberg, A., Chiang, Y.-H., Chien, W.-S. C., et al. (2015). Novel use of theta burst cortical electrical stimulation for modulating motor plasticity in rats. Journal of Medical and Biological Engineering, 35(1), 62–68.CrossRefGoogle Scholar
  14. 14.
    Blok, B. F., & Holstege, G. (1997). Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat. Neuroscience Letters, 222(3), 195–198.CrossRefGoogle Scholar
  15. 15.
    Blok, B. F., & Holstege, G. (2000). The pontine micturition center in rat receives direct lumbosacral input. An ultrastructural study. Neuroscience Letters, 282(1), 29–32.CrossRefGoogle Scholar
  16. 16.
    Nishijima, S., Sugaya, K., Miyazato, M., Shimabukuro, S., Morozumi, M., & Ogawa, Y. (2005). Activation of the rostral pontine reticular formation increases the spinal glycine level and inhibits bladder contraction in rats. The Journal of Urology, 173(5), 1812–1816.CrossRefGoogle Scholar
  17. 17.
    Noto, H., Roppolo, J., Steers, W., & De Groat, W. (1989). Excitatory and inhibitory influences on bladder activity elicited by electrical stimulation in the pontine micturition center in the rat. Brain Research, 492(1), 99–115.CrossRefGoogle Scholar
  18. 18.
    Kimura, Y., Ukai, Y., Kimura, K., Sugaya, K., & Nishizawa, O. (1995). Inhibitory influence from the nucleus reticularis pontis oralis on the micturition reflex induced by electrical stimulation of the pontine micturition center in cats. Neuroscience Letters, 195(3), 214–216.CrossRefGoogle Scholar
  19. 19.
    Noto, H., Roppolo, J., Steers, W., & De Groat, W. (1991). Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Research, 549(1), 95–105.CrossRefGoogle Scholar
  20. 20.
    Fan, W.-J., Li, Y.-T., Chen, J.-J. J., Chen, S.-C., Lin, Y. S., Kou, Y. R., et al. (2013). Sexually dimorphic urethral activity in response to pharmacological activation of 5-HT1A receptors in the rat. American Journal of Physiology-Renal Physiology, 305(9), F1332–F1342.CrossRefGoogle Scholar
  21. 21.
    Hsieh, T.-H., Lin, Y.-T., Chen, S.-C., & Peng, C.-W. (2016). Chronic pudendal neuromodulation using an implantable microstimulator improves voiding function in diabetic rats. Journal of Neural Engineering, 13(4), 046001.CrossRefGoogle Scholar
  22. 22.
    Opisso, E., Borau, A., & Rijkhoff, N. (2011). Urethral sphincter EMG-controlled dorsal penile/clitoral nerve stimulation to treat neurogenic detrusor overactivity. Journal of Neural Engineering, 8(3), 036001.CrossRefGoogle Scholar
  23. 23.
    Bosch, J. R. (2006). Electrical neuromodulatory therapy in female voiding dysfunction. BJU International, 98(s1), 43–48.CrossRefGoogle Scholar
  24. 24.
    Krasmik, D., Krebs, J., van Ophoven, A., & Pannek, J. (2014). Urodynamic results, clinical efficacy, and complication rates of sacral intradural deafferentation and sacral anterior root stimulation in patients with neurogenic lower urinary tract dysfunction resulting from complete spinal cord injury. Neurourology and Urodynamics, 33(8), 1202–1206.CrossRefGoogle Scholar
  25. 25.
    Brindley, G. (1994). The first 500 patients with sacral anterior root stimulator implants: General description. Spinal Cord, 32(12), 795–805.CrossRefGoogle Scholar
  26. 26.
    Gaunt, R. A., & Prochazka, A. (2006). Control of urinary bladder function with devices: Successes and failures. Progress in Brain Research, 152, 163–194.CrossRefGoogle Scholar
  27. 27.
    Lozano, A. M., & Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron, 77(3), 406–424.CrossRefGoogle Scholar
  28. 28.
    Rosa, M., Giannicola, G., Marceglia, S., Fumagalli, M., Barbieri, S., & Priori, A. (2012). Neurophysiology of deep brain stimulation. International Review of Neurobiology, 107, 23–55.CrossRefGoogle Scholar
  29. 29.
    Hescham, S., Lim, L. W., Jahanshahi, A., Steinbusch, H. W., Prickaerts, J., Blokland, A., et al. (2013). Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: The role of stimulation parameters. Brain Stimulation, 6(1), 72–77.CrossRefGoogle Scholar
  30. 30.
    Blok, B. F., De Weerd, H., & Holstege, G. (1995). Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M-region in the cat: A new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. Journal of Comparative Neurology, 359(2), 300–309.CrossRefGoogle Scholar
  31. 31.
    Stone, E., Coote, J., & Lovick, T. (2015). Effect of electrical vs. chemical deep brain stimulation at midbrain sites on micturition in anaesthetized rats. Acta Physiologica, 214(1), 135–145.CrossRefGoogle Scholar
  32. 32.
    Wang, J., Hou, C., Zheng, X., Zhang, W., Chen, A., & Xu, Z. (2009). Design and evaluation of a new bladder volume monitor. Archives of Physical Medicine and Rehabilitation, 90(11), 1944–1947.CrossRefGoogle Scholar
  33. 33.
    Schlebusch, T., Nienke, S., Leonhardt, S., & Walter, M. (2014). Bladder volume estimation from electrical impedance tomography. Physiological Measurement, 35(9), 1813.CrossRefGoogle Scholar
  34. 34.
    Seif, C., Herberger, B., Cherwon, E., Martinez Portillo, F., Molitor, M., Stieglitz, T., et al. (2004). Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourology and Urodynamics, 23(7), 680–684.CrossRefGoogle Scholar
  35. 35.
    Mendez, A., Sawan, M., Minagawa, T., & Wyndaele, J.-J. (2013). Estimation of bladder volume from afferent neural activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(5), 704–715.CrossRefGoogle Scholar
  36. 36.
    Beaumont, A., Marmarou, A., Czigner, A., Yamamoto, M., Demetriadou, K., Shirotani, T., et al. (1999). The impact-acceleration model of head injury: Injury severity predicts motor and cognitive performance after trauma. Neurological Research, 21(8), 742–754.CrossRefGoogle Scholar
  37. 37.
    Beaumont, A., Marmarou, C., & Marmarou, A. (2000). The effects of human corticotrophin releasing factor on motor and cognitive deficits after impact acceleration injury. Neurological Research, 22(7), 665–673.CrossRefGoogle Scholar
  38. 38.
    Hylin, M. J., Orsi, S. A., Zhao, J., Bockhorst, K., Perez, A., Moore, A. N., et al. (2013). Behavioral and histopathological alterations resulting from mild fluid percussion injury. Journal of Neurotrauma, 30(9), 702–715.CrossRefGoogle Scholar
  39. 39.
    Ekmark-Lewén, S., Flygt, J., Kiwanuka, O., Meyerson, B. J., Lewén, A., Hillered, L., et al. (2013). Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. Journal of Neuroinflammation, 10(1), 44.CrossRefGoogle Scholar
  40. 40.
    Jiang, H.-H., Kokiko-Cochran, O. N., Li, K., Balog, B., Lin, C.-Y., Damaser, M. S., et al. (2013). Bladder dysfunction changes from underactive to overactive after experimental traumatic brain injury. Experimental Neurology, 240, 57–63.CrossRefGoogle Scholar
  41. 41.
    Perkes, I., Baguley, I. J., Nott, M. T., & Menon, D. K. (2010). A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Annals of Neurology, 68(2), 126–135.CrossRefGoogle Scholar
  42. 42.
    Rabinstein, A. A., & Benarroch, E. E. (2008). Treatment of paroxysmal sympathetic hyperactivity. Current Treatment Options in Neurology, 10(2), 151–157.CrossRefGoogle Scholar
  43. 43.
    Walter, J. S., Fitzgerald, M. P., Wheeler, J. S., & Orris, B. (2005). Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations. Journal of Rehabilitation Research and Development, 42(2), 251.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Institute of Biomedical Electronics and Bioinformatics, National Taiwan UniversityTaipeiTaiwan
  2. 2.School of Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
  3. 3.Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiTaiwan
  4. 4.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
  5. 5.Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of MedicineChang Gung UniversityTaoyuanTaiwan
  6. 6.Neuroscience Research CenterChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
  7. 7.Graduate Institute of Neural Regenerative MedicineTaipei Medical UniversityTaipeiTaiwan
  8. 8.Urology Department, Zhongxiao BranchTaipei City HospitalTaipeiTaiwan
  9. 9.School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  10. 10.Department of Physical Medicine and Rehabilitation, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
  11. 11.Department of Physical Medicine and RehabilitationTaipei Medical University HospitalTaipeiTaiwan
  12. 12.Department of NeurosurgeryChina Medical University HospitalTaipeiTaiwan
  13. 13.International Ph.D. Program in Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan

Personalised recommendations